Generally, cutting force models use a sin function method to calculate chip thickness. In slot end milling, the error from a sin function method is much bigger than other machining because a tool rotation angle in cutting is much larger. Thus in this paper, a new method to calculate chip thickness was suggested and evaluated. In a new method, tool position data according to tool rotation are checked and stored so that it is possible correct chip thickness is calculated. Cutting force waveforms simulated from a sin function method and a new method and measured waveforms from experiments were compared and error percentages were obtained. Finally, a new method had good results for simulating cutting force in slot end milling.
In this study, unsintered, presintered and full-sintered low purity alumina ceramics were machined with various tools to clarify the machinability and the optimum cutting conditions. The main conclusions obtained were as follows. (1) Machined with alloy steel tool, the machinability of the presintered ceramics becomes better with the decrease of presintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide, K01, the tool life in machining the white body was the longest, and the machinability of presintered ceramics becomes poorer with the increase of the presintering temperature. (3) The K01 tools exhibit longer life than the P10 tools in machining both the white body and the ceramics presintered at l450℃ or higher temperatures, but the P10 tools shows longer tool life than the K10 tools in machining of the ceramics presintered at temperatures below l450℃.
In this paper, the effect of TiN-coating on product quality such as dimensional accuracy and surface roughness is experimentally investigated. A punch of SKDll material in cold forging an automotive bearing shaft and its related process found in a cold forging company are selected as the test example. The effect of TiN-coating is revealed in a quantitative manner. It is to be noted that TiN-coating is effective in controlling the dimensional accuracy and surface roughness as well as in increasing tool life.
The wire rope of container crane is a important component to container transfer system and is used in a myriad of various applications such as elevator, mine hoist, construction machinery, and so on. If it happen wire rope failures in operating, it may lead to the safety accident and economic loss, which is productivity decline, competitive decline of container terminal, etc. To solve this problem, we developed the active and portable wire rope fault detecting system. The developed system consists of three parts that are the fault detecting, signal processing, and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. Therefore we applied to discrete wavelet transform to extract a signal from noisy data that was used filter. As experimental result, we can reduce the expense for container terminal because of extension of exchange period of wire rope for container crane and this system is possible to apply in several fields to use wire rope.
In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PlD controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications.
A multi-purpose polariscope is developed by applying an electro-mechanical control system to a diffused transmission-type circular polariscope. A conventional polariscope is only good for manual control of optical elements. The new polariscope system is devised to be controlled through two stepping motors and two magnetic clutches. The developed system has both functions of a conventional linear-and circular-polariscope. The new polariscope can be used not only for the point-wise measurement using Tardy compensation technique but also for the full-field fringe analysis using conventional and/or phase measuring techniques, if applicable.
The damage inspection of container surface is performed by the expert inspectors at the container terminal gate of harbor. In this paper, we substitute the expert's capability with the damage inspection system using the artificial intelligent control algorithm and vision system, so we can improve the work environment and effectively decrease the inspection time and cost. Firstly, using six CCD cameras attached to the terminal gate, whole container is partially captured according to eleven sensors aligned with the entering direction of container. Captured partial images are inspected by the fuzzy system which the expert's technology is embedded. Next, we compose partial images to be a complete container image through the correlation coefficient method. Complete container image is saved to solve future troublesome problems. In this paper, the effectiveness of the proposed system was verified through the field test.
This paper is concerned with a balancing motion formulation and control of the ZMP (Zero Moment Point) for a biped-walking robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a walking robot which have a prismatic balancing weight is conditionally linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. For a stable gait, stabilization equations of a biped-walking robot are modeled as non-homogeneous second order differential equations for each balancing weight type, and a trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3dimensional graphic simulator is developed to get and calculate the desired ZMP and the actual ZMP. The operating program is developed for a real biped-walking robot IWRIII. Walking of 4 steps will be simulated and experimented with a real biped-walking robot. This balancing system will be applied to a biped humanoid robot, which consist legs and upper body, as a future work.
The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.
In this study, to develop a flash-less mold for forming of shoe-outsole, experiments and forming analysis were carried out. In order to reduce the extra-materials, offset method and mass distribution method are used in the preform design. The vertical mold structure pressing the preform was introduced to produce a flash-less shoe-sole. To measure the contact status of parting surface of mold, the pressure film has been used. The guide-gutter system and the continuous pressing mold have been developed for the discharge of extra-materials and re-pressing. By the investigation, flash of shoe-outs ole was considerably reduced.
In this study, to develop a flash-less mold for forming of shoe-midsole, experiments and forming analysis were carried out. In order to reduce the extra-materials, the final preform has been modified by the experiment of pressure forming at the room temperature. To measure the contact status of parting surface of mold, the pressure fi 1m has been used. The midsole mold of the wedge structure type has been developed for the improvement of the contact status. The vertical pressing mold structure was introduced for the production of a flash-less midsole. By the investigation, flash of shoe-midsole was considerably reduced.