Equipments to influence by external force have to take effect mechanical oscillation. These equipments regardless of the movement on the external force such as roll, pitch and heave etc, worked to keep the height of tote are required for activeness and needed a device as equipment’s fluctuation for rapidly compensation. Because the actual development of these devices is difficult to cost-effectively, we were developed to compensation simulator scaled down 1/50. In this paper, we were studying kinematic characteristics, designed the simulator to grasp the point and manufactured. This paper was analyzed for confirming the superiority of compensation simulator and set up 50 ton crane in practice.
Various processes have been developed to improve the performance of the lubrication oil pump in a recent automobile industry. In particular, trochoidal profile has been widely used for the lubrication oil pump because it is easy to flow control and a lot of oil feed rate is obtained. Accuracy of the trochoidal profile as a core component of the lubricating oil pump affects the driving performance. So, it is necessary to develop efficient processing of the trochoidal profile. In this study, a machining process for the trochoidal profile is developed by turn-mill. Cutting force, surface roughness and tool wear were evaluated in accordance with machining conditions.
Laser-Assisted machining (LAM) is a new method for processing hard-to-cut materials. However, curved shapes are difficult to predict the preheating effect of by LAM because heat sources are changed by moving laser module. So, it is necessary to study the preheating effect of the laser heat source irradiated on a 3-dimensionally shaped workpiece, such as a NURBS shaped workpiece. In this study, thermal analysis and preheating experiment of the LAM for the NURBS shaped workpiece are performed. Also, two machining methods are proposed to avoid interference of laser module and cutting tool. The results of the analysis can be applied to various shaped workpieces by LAM.
Nowadays, lower gear vibration and noise are necessary for drivers in automotive gearbox, which means that transmission gearbox should be optimized to avoid noise annoyance and fatigue before quantity production. Transmission error (T.E.) is the excitation factor that affects the noise level known as gear whine, and is also the dominant source of noise in the gear transmission system. In this paper, the research background, the definition of T.E. and gear micro-modification were firstly presented, and then different transmission errors of loaded torques for the spur gear pair were studied and compared by a commercial software. It was determined that the optimum gear micro-modification could be applied to optimize the transmission error of the loaded gear pair. In the future, a transmission test rig which is introduced in this paper is about to be used to study the T.E. after gear micro-geometry modification. And finally, the optimized modification can be verified by B&K testing equipment in the semi-anechoic room later.
Winding is one of the major processes in roll-to-roll systems. Taper tension profile in a winding determines the distribution of stress in the radial direction, i.e., the radial stress in the wound rolls. Maximum radial stress is major cause of material defect, and this study has been actively proceeded. Traditional models of radial stress model were focused on flexible and light substrate. In this study, we developed an advanced radial stress model including effects of both these parameters(weight and stiffness) on the radial stress. The accuracy of the developed model was verified through FEM(Finite Element Method) analysis. FEM result of maximum radial stress value corresponds to 99 % in comparison to result with the model. From this study, the material defects does not occur when the steel winding. And steel industry can be applied to improve the winding process.
The mechanical jointing method is very important in the machine parts and structure. They are used by the bolts and rivet because it is very convenient to replace the parts and the structure. However, the mechanical jointing methods using the bolt and rivet needed the open hole. The machine parts life cycle is reduced because this open hole created the stress concentration. Therefore, the measurement methods are needed to evaluate phenomenon of the stress concentration. This paper discusses the development of the measurement algorithm using the digital image correlation methods to measure the strain distribution of the open hole. To implement the measurement algorithm using the DIC, the LabVIEW 2010 programming tool was used. To measure the strain distribution of the open hole, the tensile specimens having an open hole are made by using the aluminum 6061-T6. To secure the reliability of measurement result using the DIC, the DIC measurement results and FEM analysis results were compared.
This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.
Performances of urethane packing in the hydraulic breaker were analyzed using a finite element method. Because of high temperature and high pressure in the hydraulic breaker, it is better to use urethane rather than rubber as a packing material. We obtained the physical properties of urethane at elevated temperature by the tensile test. We analyzed buffer seal and U-packing maintaining the pressure and preventing oil leakage. Deformation, stress distribution, contact length, contact pressure of packing at each pressure step were obtained using finite element analysis. As the temperature increases, stress and contact force tend to decrease at low pressure. As the gap between piston and cylinder increases, contact length and contact forces decrease. Consequently, it is possible to design the packing section using these analyses, and construct a system to predict the possibility of oil leakage in the hydraulic breaker.
In this study, we investigated the adhesive strength by molecular weight, mixture ratio, coating thickness, lamination temperature and aging condition of adhesive in manufacture process of Nylon-Aluminum for secondary aluminum pouch. It found that as the molecular weight of adhesive gets lower, the adhesive strength increases. In the mixture ratio, as the content of hardener get higher and as the content of solvent get lower, the adhesive strength increases. Also, as the coating thickness of adhesive get thicker, the adhesive strength increase. In addition, the adhesive strength is higher at 90 degrees of lamination temperature. So, it found that 90 degrees of lamination temperature is appropriate. In the aging condition when aged for 5 days, it found that the reaction and curing of adhesive is sufficient by measuring the adhesive strength.
The empirical evaluation of grid-connected tidal current generation system is presented in this paper. The Ul-dol-mok in Jin-do has been estimated to have tidal power of 1GW. In order to experiment, HAT (Horizontal Axis Turbine) 3-blade and 20kW grid-connected tidal current generation system was established at Ul-dol-mok in Jin-do. To generate power of generator, the speed reference of the PMSG is generated from the Cp curve and TSR (Tip Speed Ratio) of the designed turbine. The control of the converter connected to the grid is controlled to regulate unity power factor. The result showed that the turbine efficiency and system efficiency is 37 % and 31 %. This was achieved that target rate is 30 %, 20 %, respectively.