Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

  • HOME
  • BROWSE ARTICLES
  • Previous issues
11
results for

Previous issues

Article category

Keywords

Authors

Previous issues

Prev issue Next issue

Volume 40(4); April 2023

Articles
Study on the Effect of MQL Spraying Condition on the Machinability in Titanium Cryogenic Machining
Dong Min Kim, Heung Bum Park, Byung-Gook Kim, Hoon-Hee Lee, Young Ha Hwang, Ki Hyuk Kim, In Su Shin, Do Young Kim
J. Korean Soc. Precis. Eng. 2023;40(4):261-267.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.144
Titanium alloys are used in various industries due to their superior mechanical strength and corrosion resistance. However, titanium is classified as a difficult-to-machine material due to its low thermal conductivity that consequently causes poor tool life. In this study, cryogenic+MQL milling was performed to improve the machinability of Ti-6Al-4V; a cryogenic coolant and a minimum quantity fluid were sprayed simultaneously. The machinability was analyzed according to the cooling and lubrication conditions, focusing on the cutting force and tool wear. When the minimum quantity fluid was injected using two nozzles during cryogenic machining, the cutting force remained low despite the increase in machining distance due to the effective lubrication. The average cutting force at the long machining distances (82-86 passes) was 14.8% lower than that under the wet condition. The tool wear progressed without chipping, and the flank wear length was 55.5% lower than that of the wet machining because the cryogenic cooling and minimum quantity lubrication reduced the tool temperature, friction, and thermal shock.

Citations

Citations to this article as recorded by  Crossref logo
  • Design and Development of a Real-Time AI-Based Tool Failure Prediction System for Machining Difficult-to-Cut Materials
    Mi-Ru Kim, Hoon-Hee Lee, Min-Suk Park, Wang-Ho Yun
    Journal of the Korean Society of Manufacturing Technology Engineers.2025; 34(4): 225.     CrossRef
  • 26 View
  • 0 Download
  • Crossref
Effect on Bacterial Culture on Ceramic Surfaces Deposited Using a Laser
Sangwoo Yoon, Joohan Kim
J. Korean Soc. Precis. Eng. 2023;40(4):269-274.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.137
The hydrophilicity of the cell culture substrate was controlled by depositing it on the alumina surface through the laser-induced backward transfer (LIBT) method. Alumina particles were sized using laser energy density and deposited on the soda lime glass surface. The particle size and hydrophilicity of the alumina deposition surface were evaluated by measuring the surface roughness, contact angle, and light diffusivity. As the particle size increased, the effect of alumina became stronger, and the deposited surface had relatively higher roughness, stronger hydrophilicity, and higher light diffusivity. The stronger the alumina effect, the lower the growth of Staphylococcus aureus on the deposited surface. In this study, it was confirmed that selective bacterial growth and culture could be controlled by adjusting the strength of the alumina coating using the LIBT process.
  • 13 View
  • 0 Download
SEM Image Quality Improvement and MTF Measurement Technique for Image Quality Evaluation Using Convolutional Neural Network
Chan Ki Kim, Eung Chang Lee, Joong Bae Kim, Jinsung Rho
J. Korean Soc. Precis. Eng. 2023;40(4):275-282.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.003
As the size of semiconductor devices gradually decreases, it is important to measure and analyze semiconductor devices, to improve the image quality of semiconductors. We use VDSR, one of the Super-Resolution methods to improve the quality of semiconductor devices’ SEM images. VDSR is also a convolutional neural network that can be optimized with various parameters. In this study, a VDSR model for semiconductor devices’ SEM images was optimized using parameters such as depth of layers and amount of training data. Meanwhile, the quantitative evaluation and the qualitative evaluation did not match at the low scale factor. To solve this problem, we proposed an MTF measurement method using the slanted edge for better quantitative evaluation. This method was verified by comparing the results with the PSNR and SSIM index results, which are known as quality indicators. Based on the results, it was confirmed that using the MTF value could be a better approach for the evaluation of SEM images of the semiconductor device than using PSNR and SSIM.
  • 15 View
  • 0 Download
Development of Passive Upper Limb Exoskeleton Device (H-Frame) for Augment the Load Carrying Capability of the Human
Dong-Hyun Jeong, Do Yeon Kang, Ji Seck Lee
J. Korean Soc. Precis. Eng. 2023;40(4):283-289.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.113
Carrying heavy objects in agricultural and industrial sites is the most basic labor, which requires a lot of energy. Many equipment such as crane, chain block, elevator, and forklift truck has been developed to reduce human power. Nevertheless, many tasks require human labor. In addition, rapid aging is increasing musculoskeletal diseases in industrial workers. Consequently, various muscle auxiliary wear robots and devices are being developed. In this study; a passive upper limbs exoskeleton (H-Frame) was developed to help carry over 20 kg of weight in industrial and agricultural sites. For the functional test of the developed H-Frame, tests were carried out for 20, 30, and 40 kg of each box. To measure the objective and numerical data of the H-Frame, various sensor values such as EMG (Electromyography), harness compression force sensor, and load cell value of side support and rope were measured. EMG and metabolic experiments were also performed on 8 subjects before and after wearing the device. The average value of the upper extremity muscle showed a 44% reduction effect after wearing. The device helped the wearer when carrying heavy objects. It could help prevent musculoskeletal diseases in industrial and agricultural fields.

Citations

Citations to this article as recorded by  Crossref logo
  • Comparative Analysis between IMU Signal-based Neural Network Models for Energy Expenditure Estimation
    Chang June Lee, Jung Keun Lee
    Journal of the Korean Society for Precision Engineering.2024; 41(3): 191.     CrossRef
  • 33 View
  • 0 Download
  • Crossref
Laser Micro-Structuring of Super-Hydrophobic Surface for Lotus Effect
Chang Jun Lee, Hun Kook Choi, Ik Bu Sohn, Jun Seok Ha
J. Korean Soc. Precis. Eng. 2023;40(4):291-299.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.123
In a pilot natural super-hydrophobic surfaces study, a super-hydrophobic surface was made by coating, etching, laser ablation, chemical vapor deposition and lithography. In this study, cone-shaped periodic micro and nano-structures were constructed on a silica surface with femtosecond and picosecond laser, and the period of micro-structures between cone shape patterns was increased with 10 μm intervals. The contact angle and image of the super-hydrophobic surface were analysed and the cone (Aspect-ratio 1.27) shape model with micro-protrusion structure similar to the surface of the lotus leaf was made to measure the contact angle. To analyse the differences in the contact angles between the cone shapes and heights of the micro-protrusion, different samples with cone (Aspect-ratio 1.27), sphere (Aspect-ratio 1.00) shapes were made through laser micro-machining technology. To mimick the natural lotus leaves, the optimum condition was a cone shape. Samples of PDMS with different shapes and mixed micro/nano-structures were fabricated with a PDMS mold insert. The largest contact angle was measured at 170.42° which is similar to the contact angle of the lotus leaf. This mold insert could be used repeatedly. The molding process is advantageous for large areas and mass production.

Citations

Citations to this article as recorded by  Crossref logo
  • Study on Micro Grooving of Tungsten Carbide Using Disk Tool
    Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim
    Journal of the Korean Society for Precision Engineering.2024; 41(2): 123.     CrossRef
  • 29 View
  • 0 Download
  • Crossref
A Recurrent Neural Network for 3D Joint Angle Estimation based on Six-axis IMUs but without a Magnetometer
Chang June Lee, Woo Jae Kim, Jung Keun Lee
J. Korean Soc. Precis. Eng. 2023;40(4):301-308.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.112
Inertial measurement unit (IMU)-based 3D joint angle estimation have a wide range of important applications, among them, in gait analysis and exoskeleton robot control. Conventionally, the joint angle was determined via the estimation of 3D orientation of each body segment using 9-axis IMUs including 3-axis magnetometers. However, a magnetometer is limited by magnetic disturbance in the vicinity of the sensor, which highly affects the accuracy of the joint angle. Accordingly, this study aims to estimate the joint angle using the 6-axis IMU signals composed of a 3-axis accelerometer and a 3-axis gyroscope without a magnetometer. This paper proposes a recurrent neural network (RNN) model, which indirectly utilizes the joint kinematic constraint and thus estimates joint angles based on 6-axis IMUs without using a magnetometer signal. The performance of the proposed model was validated for a mechanical joint and human elbow joint, under magnetically disturbed environments. Experimental results showed that the proposed RNN approach outperformed the conventional approach based on a Kalman filter (KF), i.e., RNN 3.48° vs. KF 10.01° for the mechanical joint and RNN 7.39° vs. KF 21.27° for the elbow joint.
  • 21 View
  • 0 Download
Control Characteristics of a Mechanically Driven Gas Pressure Controller for a Closed Pneumatic Circuit
Cheongyong Park, Wukchul Joung
J. Korean Soc. Precis. Eng. 2023;40(4):309-317.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.125
In this work, precise gas pressure control based on a closed pneumatic circuit was achieved with a mechanically driven gas pressure controller (MDGPC), consisting of a variable-volume bellows chamber and linear actuator. The linear actuator was employed to change an axial dimension of the bellows chamber with the proportional (P) and proportional-integral (PI) controls for fast, stable, and precise pressure control of the gas inside the bellows chamber. The pressure control stability and resolution of the MDGPC were approximately 1.5 Pa and 10 Pa for the P control and 1 Pa and 5 Pa for the PI control, respectively. Despite the more stable and precise control characteristics of the PI control method, overshoots and undershoots observed during the set-point pressure changes and recoveries from pressure disturbances rendered it unsuitable for the MDGPC control method. In contrast, the MDGPC operated under the P control did not show any significant overshoots or undershoots when the set-point pressure abruptly changed or when the MDGPC was exposed to pressure disturbances. Therefore, it was concluded that a fast, precise, and stable gas pressure control in a closed manner was attainable with the MDGPC under the P control.

Citations

Citations to this article as recorded by  Crossref logo
  • Pneumatic temperature control characteristics of a variable-load heat source with a pressure-controlled loop heat pipe
    Bomi Nam, Wukchul Joung
    International Communications in Heat and Mass Transfer.2025; 166: 109219.     CrossRef
  • Temperature uniformity of a hybrid pressure-controlled loop heat pipe with a heat pipe liner
    Bomi Nam, Cheongyong Park, Wukchul Joung
    International Communications in Heat and Mass Transfer.2024; 156: 107656.     CrossRef
  • Progresses in Pneumatic Temperature Control Technique for Ultra-Precise Control and Measurement of Thermal Environment
    Bomi Nam, Wukchul Joung
    Journal of the Korean Society for Precision Engineering.2024; 41(10): 759.     CrossRef
  • 50 View
  • 1 Download
  • Crossref
Realization and Scheduling of Free Spot Assembly Method for Machine Tools Using Cooperative Industrial Robots
Kosuke Inoue, Hideki Aoyama
J. Korean Soc. Precis. Eng. 2023;40(4):319-327.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.130
The manufacturing industry is increasingly demanding flexible manufacturing and existing manufacturing methods with fixed equipment do not meet this requirement. The free spot assembly system is an ultra-flexible method that responds to this demand, enabling spatiotemporal free assembly by conveying all necessary resources with automated guided vehicles (AGVs). Although some studies have proposed free spot assembly, free spot assembly feasibility for assembling heavy objects, such as machine tools, by aligning them at high precision has not been verified. Work hour shifts, differences in worker skill levels, and cooperative work with robots have also not been considered in free spot assembly scheduling. This paper presents elemental technologies for realizing a free spot assembly system, with a scheduling method where a genetic algorithm is supported by dispatching rules with six genes. The computational results reveal the effectiveness of the proposed algorithm.

Citations

Citations to this article as recorded by  Crossref logo
  • Development of a Statically Balanced Lifting Device for Repetitively Transporting Construction Materials
    Byungseo Kwak, Seungbum Lim, Jungwook Suh
    Journal of the Korean Society for Precision Engineering.2024; 41(12): 929.     CrossRef
  • 20 View
  • 0 Download
  • Crossref
Control Performance Improvement of a Nonlinear Magnetic Levitation System with a Disturbance Observer
Yupeng Zheng, Hyeong-Joon Ahn
J. Korean Soc. Precis. Eng. 2023;40(4):329-334.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.133
Magnetic levitation system (MLS) is a typical nonlinear system that controls the position of a steel ball with the magnetic force of the electromagnetic actuator. Since disturbances, due to various external forces and modeling errors, may cause excessive vibration or poor command following, disturbance suppression is necessary to improve the control performance of the MLS. This paper presents a control performance improvement approach of an MLS with a disturbance observer (DOB). First, a mathematical model of the MLS was introduced and validated with the measured frequency response. The MLS steel ball was levitated with a proportional–integral–derivative (PID) controller and a DOB was designed based on the physical model of the MLS. Both disturbance rejection and command tracking performances of the MLS with the DOB were investigated with several design parameters such as PID gains and Q filter. The disturbance rejection and command tracking performances were improved by 76.1% and 64.7%, respectively by using DOB. Finally, the disturbance rejection and command-following performances of the MLS with the DOB were verified experimentally. The effectiveness and limitations of DOB were explained with measured closed-loop frequency responses.

Citations

Citations to this article as recorded by  Crossref logo
  • Control Boost of a Magnetic Levitation System with Disturbance Observers
    Yupeng Zheng, Hyeong-Joon Ahn
    Journal of the Korean Society for Precision Engineering.2024; 41(4): 273.     CrossRef
  • 26 View
  • 0 Download
  • Crossref
Resistant Characteristics of AAO-Based Thin Film Solid Oxide Fuel Cells Using Ni-GDC Anode by GLAD Method
Jaewon Yoo, Myung Seok Lee, Yang Jae Kim, Suk Won Cha
J. Korean Soc. Precis. Eng. 2023;40(4):335-340.
Published online April 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.135
In this study, we fabricated thin film solid oxide fuel cells on nanoporous anodic aluminum oxide (AAO) substrate for low-temperature operation using the all-through sputtering method. To deposit up to a three-micrometer thick anode with both porosity and electrical conductivity, we used the glancing angle deposition and co-sputtering methods. For the anode materials, we used nickel gadolinium-doped-ceria (Ni-GDC) mixed ionic and electronic conductor (MIEC), which improved hydrogen oxidation reaction reactivity at the anode side. TF-SOFCs were successfully operated at 500℃, and 223.6 mW/cm² was their highest measured maximum power density. We conducted structural and electrochemical analyses to figure out cells’ unique resistant characteristics; ohmic resistance through the anode thin film and polarization resistance of reaction area near the narrowed anode pores. We found how the anode thin film thickness affects the current collecting performance and the anode reactivity, and their effects were qualitatively and quantitatively compared.
  • 15 View
  • 1 Download
Journal of the Korean Society for Precision Engineering Vol.40 No.4 목차
J. Korean Soc. Precis. Eng. 2023;40(4):343-344.
Published online April 1, 2023
  • 8 View
  • 0 Download