This study aimed to determine mechanisms involved in the decrease of knee adduction moment (KAM) when waking with a contralateral cane without any constraint. Ten young subjects performed walking under two conditions: unassisted (no cane) or with a cane. After collecting data from the stance phase of the left foot, kinematic and kinetic data at early and late peaks of KAM were extracted for further analyses. When using a cane, early and late peaks of KAM decreased (p < 0.05) by 20.5% and 29.6%, respectively. Stepwise multiple regression analysis showed that the moment arm accounted for 59% and 95% of the variance of early and late KAM peaks, respectively. This reduction in moment arm occurred primarily due to lateral rotation of the GRF. Regarding the mechanism behind this, it could be due to the following: 1) by using a cane, the synthetic center of pressure shifted medially, which caused synthetic GRF to become more vertical than that of an unassisted walking and accordingly, and 2) the decrease of horizontal component of synthetic GRF reduced horizontal component of foot GRF, leading to lateral rotation of foot GRF. Understanding these mechanisms might help us improve effective use of canes.
This study investigated the natural frequency of a self-excited vibrating workpiece and cutting tool using a hammer impact test to acquire vibration data. Time-domain cutting vibration data were converted to the frequency domain using FFT. The workpiece signal exhibited a high amplitude, peaking at 392 Hz, while the cutting tool signal presented a peak at 930 Hz. Stability Lobe Diagrams were constructed to assess dynamic stability. Cutting experiments revealed an obvious relationship between spindle speed and signal amplitude, with higher speeds leading to larger amplitudes. Frequency analysis revealed a peak near the cutting tool's 900 Hz natural frequency. Smoother surface finishes were observed at 0.15 mm cutting depth, while 0.2 mm resulted in a wavy surface, indicating chatter. To investigate chatter frequency and reduce noise, a multiple-denoising method combined Bior 3.7 and DB10 wavelets to reduce amplitude and improve signal representation, especially for non-smooth features. The proposed method aimed to reduce the 900 Hz cutting tool’s natural frequency. Results showed a clear chatter frequency at 450-480 Hz for 0.2 mm depth cuts at spindle speeds of 500, 1,000, and 1,400 rpm. The proposed method exhibited high efficiency, achieving the higher signal-to-noise ratio and lower mean-square error than Bior 3.7 and DB10 wavelet denoising techniques.
Citations
Citations to this article as recorded by
A Review of Intelligent Machining Process in CNC Machine Tool Systems Joo Sung Yoon, Il-ha Park, Dong Yoon Lee International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243. CrossRef
This study reviewed types and dynamic behavior characteristics of shock-absorbing materials used in spent nuclear fuel transport containers. Among various shock-absorbing materials, wood, honeycomb, and foam materials were the most commonly used. Redwood and balsa wood are sustainable materials with excellent energy absorption properties and natural decomposition, but vulnerable to temperature and humidity. Although honeycomb materials have better mechanical strength than other materials, they only support unidirectional loads. Urethane foam and Fenosol foam materials have lower mechanical strength and lower shock absorption than others, but have higher lightness and fire resistance. They also allow users to control density and produce them. Due to their isotropic characteristics and ease of increasing or decreasing strength by adjusting density, foam materials are better for design and manufacturability than others. Shock-absorbing materials show more complex behavior characteristics than general steel materials. For shock absorption, large deformations are considered up to sections that greatly exceed the elastic region, inevitably increasing the complexity of behavior simulation. During design, to accurately simulate large deformation behavior, it is important to select an appropriate analysis property card and determine major influencing factors. An analysis-based review was additionally conducted for property cards typically applied to foam materials.
A ball-on-plate system is a mechanical control system for measuring the position of a ball placed on a touch panel and controlling the ball to move to a desired position. This system has been applied to a shelf cart. A hole was made in the center of the top shelf of the cart with a ball-on-plate system installed, allowing objects to be placed on the plate. The cart equipped with this system is named a "level-maintaining shelf cart". When external disturbances act on the cart, the ball- on-plate system ensures that the plate remains level, preventing objects on the plate from sliding or toppling. However, when the cart passes over uneven surfaces or experiences disturbances with acceleration beyond the system's allowable limits, the ball on the touch panel may detach, resulting in an "air ball" state, in which the system cannot measure the position of the ball, leading to instability. To address the air ball state, a compensator consisting of a closed-loop observer and full-state feedback for the ball-on-plate system is designed. A model for the closed-loop observer was created by modeling the ball-on-plate system. Experiments confirmed that the system could maintain stable control even in an air ball state.
This study investigated effects of energy levels, pulse durations, and pulse frequencies during an IPL (Intense Pulsed Light) sintering process on surface morphology and resistance of screen-printed Ag patterns on PET substrates. Surface characteristics, including primary profile (Pa), roughness (Ra), thickness, and sheet resistance, were measured before and after sintering. At fixed energy levels (13.18, 32.96, and 46.14 kW), increasing pulse counts (2, 5, and 7) at 6 ms durations significantly increased Pa and thickness, while Ra was not changed. In contrast, higher pulse counts (4, 10, and 14) at 3 ms durations improved surface roughness by reducing Ra. Statistical analysis (Paired T-test) confirmed these results. Sheet resistance analysis showed that lower pulse counts at 6 ms caused greater variability in resistance, stabilizing with higher counts. At 3 ms, surface resistance decreased with higher pulse counts, showing reduced variability. These results suggest that adjusting pulse conditions and counts during the sintering process can optimize both electrical properties and uniformity. Additionally, morphological changes before and after sintering indicated that these adjustments might influence upper-layer printability in multilayer printing. The study highlights the importance of considering both functional and morphological characteristics during sintering for optimized production of printed electronic devices.
Finite element analysis (FEA) was conducted to investigate the cutting process of a single-layer PET film during rotary die cutting. In a roll-to-roll system, cutting blades formed on rollers were modeled as rigid bodies, while the PET film was modeled as an elastoplastic material using a two-dimensional approach. Stress-strain behavior of the film was measured through experimental tensile testing and used as input data for FEA. Force-displacement data from vertical cutting experiments of PET film were collected to validate the FE model and compared with simulation results. Stress distribution of the film and cutting force per unit thickness during the rotary cutting process were analyzed. The cutting force and range of effective cutting angles were proportional to tip angle of the blade within a range of 25 to 60 degrees, showing a noticeable change in proportionality slope at a tip angle of 40 degrees. As the film tension increased, the cutting force in thickness direction decreased, while that in longitudinal direction remained almost constant. Errors in film feed velocity significantly affected the cutting force. When the film moved slightly slower than the reference velocity, the cutting force was minimized due to reduced contact between the film and blade surface.
Glassy carbon (GC) has superior properties such as high corrosion resistance, heat resistance, and low adhesion to glass materials in a glass molding process (GMP). In addition, the demand for GC molds is increasing in various industries that require high precision of glass parts. However, GC is a difficult-to-machine material with high hardness and brittleness. Electrical discharge machining (EDM) can machine GC regardless of its strength or hardness. In this study, tungsten carbide (WC-Co) electrode was fabricated by wire electrical discharge grinding (WEDG). Characteristics of EDM of micro holes on GC were then analyzed. As capacitance and voltage increased, material removal rate (MRR) increased while machining time tended to decrease. However, at low voltages, short circuit and secondary discharge occurred, which increased the electrode wear rate (EWR). As a result, a D-shaped electrode that could prevent short circuit and debris accumulation was fabricated and a micro hole array was machined.
Gas sensors are crucial devices in various fields such as industrial safety, environmental monitoring, and gas infrastructure. Designed to have high-sensitivity, stability, and reliability, gas sensors are often required to be cost-effective with quick response and compactness. To meet diverse needs, we developed two types of gas sensors based on volumetric and manometric analyses. These sensors could operate by measuring gas volume and pressure changes, respectively, based on emitted gas. These sensors are capable of determining gas transport parameters such as gas uptake, solubility, and diffusivity for gas-charged polymers in a high-pressure environment. These sensors can provide rapid responses within one-second. They can measure gas concentration ranging from 0.01 wt·ppm to 1,500 wt·ppm with adjustable sensitivity and measurement ranges. As a result, such sensor system can be used to facilitate real time detection and analysis of gas transport properties in pure gases including H₂, He, N₂, O₂, and Ar.