The mechanical drilling of micro holes is considered a difficult endeavor, due to the high hardness and brittleness of alumina plates found during the drilling process. In this work, an alumina plate with a 4mm thickness is drilled with the use of a continuous-wave Nd:YAG fiber laser. As can be seen, there is minimum required power density to ablate the alumina plate. As shown in this study, the hole diameter and straightness are not constant with the hole depth recorded, which is presumably due to the recondensation of vaporized alumina, and the characteristics of irregular laser radiation. The oxygen pressure, power density, focal position, and laser on time (duration) are chosen as the control parameters. To understand the influence of control parameters, the orthogonal arrays table in Taguchi method is applied, and the micro holes are evaluated based on the use of geometrical factors. Through the review of a sensitivity and interaction analysis, the appropriate duration and oxygen pressure are identified as the major parameters governing the geometrical quality of drilled holes in this study.
Citations
Citations to this article as recorded by
Micro Drilling of Single Crystal SiC Using Polycrystalline Diamond Tool Ui Seok Lee, Chan Young Yang, Ju Hyeon Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2021; 38(7): 471. CrossRef
The recent development of core techniques in the IT industry can be summarized as a technical advancement for safety and convenience, and mechanical technology for being “eco-friendly” and lightweight. Under these circumstances, research of lightweight material has become attractive. In this study, CFRP (Carbon Fiber Reinforced Plastic) laminate specimens are subjected to a tensile test using the UTM(Universal Testing Machine, AG-IS 100 kN) to estimate their mechanical properties in terms of the Hole machining impact evaluation. The FEM (Finite Elements Method) analysis method is applied and the material properties obtained from basic experiments such as the Tensile test, the compressive test, and the shear test. CFRP materials properties from a previous study, as well as a finite element analysis program for Hole machining CFRP was compared with the experiments.
Citations
Citations to this article as recorded by
Comparative Study on J-Integrals of SM45C, Short Fiber GFRP and Woven Type CFRP Shown at Crack through Analytical Method Jae Woong Park, Sung Ki Lyu, Jae Ung Cho Journal of the Korean Society for Precision Engineering.2019; 36(6): 567. CrossRef