This study proposed a method for simultaneously reducing mass imbalance and vibration in gimbal systems utilizing a tuned mass damper (TMD) as a balancing weight. Finite element analysis (FEA) and experiments were used for testing the method. Mass imbalance in gimbal systems generally causes external disturbance torque. To reduce this, a balancing weight can be used. However, weight increase due to balancing weight causes resonance in the gimbal system, which generates bias error in the gyroscope sensor. This study demonstrated that both mass imbalance reduction and vibration reduction effects could be achieved by utilizing a TMD as a balancing weight. FEA results showed that the mass imbalance reduction effect of the gimbal was not affected by TMD. The magnitude of vibration response at the resonance point was reduced by about 98% with TMD. When a TMD was applied, the magnitude of the vibration response at the resonance point was reduced by 98% to the same level as that of the gimbal. Bias error of the gyroscope sensor was reduced by about 95% or more. These results show that a TMD is useful for effectively reducing mass imbalance and vibration in gimbal systems while improving gyroscope sensor performance.
For this study, A vibration attenuation of the vibration absorber that is attached to the flight structures was carried out. Flight structures are stabilized to allow for operations in various operating environments; however, as the size and weight of the flight structures are reduced, to meet the requisite performance, the operating-environment-induced vibrations lead to a degraded operating performance; therefore, the reduction of these vibrations should lead to an increased operating performance. The vibration absorber includes a compliant energy-storage device, such as a spring, and is mass secured to the energy-storage device. In this study, the research to prepare the anti-vibration design of the flight structures was accomplished, and the vibration of the flight structures was analyzed using the finite element analysis; accordingly, a vibration experiment for the verification of the result of the finite element analysis was also conducted. Further, the design guidelines of a tuned mass damper were obtained.
Citations
Citations to this article as recorded by
A study of Tuned Mass Damper (TMD) Application for Mass Imbalance and Vibration Reduction in Gimbal Systems for High-speed Maneuverable Vehicles Jun-Soo Kim, Dong-Kyun Lee, Jong-Kuk Lee, Hyeon-Jun Cho, Ji-in Jung Journal of the Korean Society for Precision Engineering.2024; 41(11): 857. CrossRef