This study quantitatively examines the impact of ultraviolet (UV) intensity and energy on the formation of high aspect ratio (HAR) microstructures using the Self-Propagating Photopolymer Waveguide (SPPW) process. This mechanism relies on the self-focusing of UV light within a refractive index gradient, allowing the light to propagate and polymerize vertically beyond the initial exposure zone. Experiments were performed at UV intensities of 7.5, 12.5, and 17.5 mW/cm2, with energy levels ranging from 0.0375 to 13.5 J/cm2. The results indicated that a lower UV intensity of 7.5 mW/cm2 produced uniform and vertically elongated structures, achieving a maximum aspect ratio of 12.26 at 0.9 J/cm2. In contrast, higher UV intensities led to lateral over-curing, base expansion, and shape distortion, primarily due to rapid polymerization and the oxygen inhibition effect. These findings emphasize the importance of precisely controlling both UV intensity and energy to produce uniform, vertically aligned HAR microstructures, offering valuable insights for optimizing the SPPW process in future microfabrication applications.
A study about superhydrophobic surface started from the analysis of lotus leaf, and superhydrophobic surface fabrication methods have been researched. These methods cannot be used on various metals because the fabrication methods have complex and material-selective processes. In this work, we report a simple fabrication method using abrasive blasting and a self-assembled monolayer coating to produce a superhydrophobic surface. Abrasive blasting was used to create microstructures on metal surfaces. Random peak and valley microstructures were created after abrasive blasting, and a surface profile was measured to analyze the relationship between blasting pressure and a roughness parameter. A hydrophobic material coating was performed by a self-assembled monolayer method. Six kinds of metal surfaces displayed superhydrophobic properties. This utilitarian method could be applied to diverse applications.