Microfluidics allows for precise manipulation of small volumes of analytical solutions in diverse applications, including disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. Among these diverse applications, one of the most critical aspects is the precise and programmable control of flow within microfluidic control devices. However, microfluidic experiments that employ pressure control via a gas tank may encounter restricted mobility. To address these challenges, we developed an air pump feedback control system utilizing artificial intelligence image analysis and devised a method to enhance portability. In this paper, we utilized a commercially available portable pump to achieve the desired pressure and subsequently cease operation. In addressing the challenge of sustaining prolonged pressure, we implemented a strategy wherein the dimensions of the pressure vessel were modified, accompanied by iterative pump activations, thereby ensuring the sustained maintenance of pressure over time. The evaluation of the flow controller developed in this study involves conducting a comparative flow analysis with established pneumatic flow controllers. Furthermore, we employed artificial intelligence image analysis methods to automate the operation of iterative pumps. In conclusion, we anticipate that the developed portable microfluidic control device will lead to innovative advancements in modern technology and healthcare through its potential applications.
In this paper, theoretical and experimental studies were conducted on the cooling performance of a microchannel heat dissipation device with a manifold layer added. By adding 500 μm wide microchannels and manifold flow fields, the rheological properties of the cooling fluid were enhanced to improve the heat transfer performance. The size of the microchannel used for cooling was 40 × 40 × 5 mm, and was evaluated under a heat flux of 12.5-43.75 W/㎠ and a flow rate of 0.3-1.1 L /min conditions. As a result of the experiment, in the case of a microchannel heat sink of 500 μm compared to the existing heat sink, cooling was successfully performed under a heat flux condition of about four times
Citations
Citations to this article as recorded by
Thermal Design of Heatsink for M.2 NVMe SSD Reliability Chan Ho Kim, Jinsung Rho, Joong Bae Kim Journal of the Korean Society for Precision Engineering.2023; 40(5): 389. CrossRef