In this study, acoustic emission (AE) signals associated with the behavior of materials in the magnesium alloy (Mg AZ31B) tensile test were analyzed. The AE sensor was attached with the material to measure the AE signals. During the tensile experiment, the AE sensor measured the elastic waves generated inside the specimen. The AE parameters, such as, the signal energy, duration, and frequency centroid, were studied. We also analyzed the effect of the materials size and tensile speed on the AE signals. As a result, the lowest frequency centroid value occurred at the yield and fracture points. As the width and length of the specimen increased, the number of hit counts increased and the peak frequency occurred. Other AE parameters, such as, the duration and frequency centroid, were not affected. As the tensile speed increased, the hit decreased and the frequency centroid decreased in the elastic region. It was found that in the detection of the yield and fracture deformation, the number of counts, and frequency centroid were appropriate.
Plastic deformation of balls in safety coupling by collision with V-Hole was investigated in the current study. Generally, when the applied torque is greater than the maximum allowable torque, balls in V-Hole get out from the holes and the coupling loses the torque transfer capability. After balls are out from the V-Holes, the balls and V-Hole rotate at a different velocity. When balls meet the next V-Hole, they collide into the wall of the V-Hole. Due to this collision, plastic deformation and wear take place. The plastic deformation and wear may reduce the torque transfer capability of the safety coupling. The reduction in torque transfer capability was observed in the experiment. In this study, plastic deformation of balls and flange was investigated through dynamic analysis of the safety coupling. Also, the effect of relative rotational velocity on the plastic deformation was investigated.