The high-frequency electric resistance welding (HF-ERW) process is widely used in the steel pipes production because it can weld at a high speed, has excellent weldability, and attains clean and precise shapes. However, for process improvement, analytic studies on electromagnetic field and temperature distributions, and selection of appropriate process variables are required. In this study, finite element analysis models that can analyze the electromagnetic field distribution and temperature distribution in the HF-ERW of a steel pipe were proposed, in consideration of the characteristics of the process, including electromagnetic phenomena localized to the workpiece surface and fast welding speed. By applying the proposed analysis models, changes in current density, magnetic flux density, generated heat density, and fused width in the pipe could be predicted according to changes in process variables such as the V angle of the strip, the electrode position, and the source voltage. Through comparison with the analysis and the limited-case experiment, the analysis result predicted the actual fused width fairly well, and the validity of the proposed model could be verified.
Citations
Citations to this article as recorded by
Characterization of an electric resistance welded steel plate K. K. Patel, R. Nagar, D. Chauhan Practical Metallography.2025; 62(5): 331. CrossRef
Analysis of Stress Distribution around the Weld Zone in High Frequency Resistance Welding of Steel Pipe Young-Soo Yang, Kang-Yul Bae Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(6): 21. CrossRef
Analysis of Electromagnetic Field and Temperature Distribution around Narrow Gap in High-frequency Resistance Welding of Steel Pipe Young Soo Yang, Kang Yul Bae Journal of the Korean Society for Precision Engineering.2023; 40(10): 829. CrossRef
Research on advanced cooling system design is significant in achieving a high turbine inlet temperature in the gas turbine industry. The higher turbine inlet temperature of the gas turbine increases thermal efficiency. However, it also aggravates the gas turbine deterioration, lifespan, and efficiency. In this study, a numerical model is developed for simulating the cooling performance of the gas turbine vane with the turbine inlet temperature of 1528 K. The impact of the coolant air flow rate and hole-shape were investigated. The expanded hole shape had better cooling performance than the general cylindrical shape, and showed higher cooling efficiency. We suggest that there is a relationship between the shape of the film cooling holes and the cooling air flow rate that achieves the desired cooling effectiveness.
This paper describes the development of a power assistive device controller with user intention detection for fire fighters. In order to detect the intention of users, an F/T sensor frame was designed for the power assistive device controller. Using the numerical approach, each directional strain value of the F/T sensor frame was evaluated singly to determine the optimum point to mount the strain gauge under varying load conditions. The numerical analysis was conducted using the commercial program Ansys v11.0. The finite element model for the F/T sensor frame consisted of 37,547 elements and 157,154 nodes. A sensor bonding device and calibration jig were designed for the F/T sensor frame. In an effort to obtain the decoupling matrix for the F/T sensor frame of the proposed power assist device, calibration tests were conducted in the x-direction, y-direction, z-direction, My-direction and Mz-direction. In addition, the operating system was tested using the power assistive device controller that comprised of the F/T sensor frame.
Polymer microlens manufacturing using thermal reflow was simulated and optimized by a numerical approach. Microlenses are used in various industrial fields, such as optical, semiconductor, and observation experiment equipment. Therefore, polymer microlens fabrication using an economical thermal reflow process is important for mass production and cost reduction. The feasibility of a thermal reflow process for microlens fabrication was analyzed in this paper by numerical methods. First, we refer to the previous studies and papers for the theoretical shape of the microlens. Second, for numerical simulation of the process above Tg (Glass Transition Temperature), we studied the multiphase flow simulation using a VOF method and adopted a Cross-WLF model to consider the rheological characteristics of PMMA. Finally, several parametric studies were carried out to compare the simulation profile and the theoretical lens shape in order to optimize the thermal reflow process. The numerical approach presented in this paper would enable a more efficient analysis and provide better understanding of reflow behavior to obtain the optimal process.
Citations
Citations to this article as recorded by
Fabrication and Characterization of Automotive Aspheric Camera Lens Mold based on Ultra-precision Diamond Turning Process Ji-Young Jeong, Hwan-Jin Choi, Jong Sung Park, Jong-Keun Sim, Young-Jae Kim, Eun-Ji Gwak, Doo-Sun Choi, Tae-Jin Je, Jun Sae Han Journal of the Korean Society for Precision Engineering.2024; 41(2): 101. CrossRef
Replication of Microlens Array via Partial-filling Compression Molding NamSeok Lee Journal of the Korean Society of Manufacturing Technology Engineers.2023; 32(1): 17. CrossRef
In this study, a numerical analysis for predicting the internal pressure of the flight vehicle system with relief valve and N2-injection type cooler was conducted to operate the system safely in an unsteady-state condition. By adopting an incompressible ideal gas equation to computational domain at each time step, internal pressure was calculated without iteration. To increase the accuracy of the numerical analysis results, numerical model was correlated by modifying the volume of the computational domain. To modify the volume of computational domain, internal pressure along time was compared with experimental results. It showed good agreement within system operating time. Air mass flow rate at the relief valve is calculated by interpolating the performance curve data. For accurate and rapid calculation of the internal pressure in an unsteady-state condition, time step size convergence study was conducted additionally. By using a correlated numerical model, Pcr of the relief valve is conducted to remain the flight vehicle system within an internal pressure range of 0.6-2.0 atm, in each flight profile. Finally, specific Pcr of relief valve was applied to the system and the experimental results showed that the internal pressure remained in a safe range.