This paper presents an improved input shaping method to eliminate vibration during circular interpolation of a flexible 2-axis positioning system. Due to the time delay introduced by input shaping, simultaneous 2-axis positioning with circular interpolation results in a certain amount of errors from the intended track or trajectory. This study investigated the track errors associated with circular interpolation caused by input shaping for a flexible 2-axis positioning system. The following three strategies for reducing such errors were proposed: velocity reduction in circular interpolation, adjustment of the time delay between 2 axes commands, and employment of a velocity profile compensation function. Simulations were performed to discuss the pros and cons of the three proposed strategies. Experiments were also performed to validate the results. Simulation and experiments showed that the track errors due to input shaping can be sufficiently reduced by combined use of the proposed strategies.
Citations
Citations to this article as recorded by
A Study on the Improvement of Machining Precision by Applying Input Shaping Method to Machining Center Kang-Ho Ko, Dong-Wook Lim, Seong-Wook Hong Journal of the Korean Society of Manufacturing Technology Engineers.2023; 32(4): 189. CrossRef
Input-shaping-based improvement in the machining precision of laser micromachining systems Dong-Wook Lim, Seong-Wook Hong, Seok-Jae Ha, Ji-Hun Kim, Hyun-Taek Lee The International Journal of Advanced Manufacturing Technology.2023; 125(9-10): 4415. CrossRef
Application of Input Shaping to a CNC Laser Processing Machine to Enhance Processing Precision Kang Ho Ko, Jin Uk Sim, Seong-Wook Hong Journal of the Korean Society of Manufacturing Technology Engineers.2022; 31(5): 346. CrossRef
Most positioning systems experience residual vibration during operation. Such residual vibration can be eliminated or reduced to an acceptable level by using the input shaping method. However, adopting the input shaping methods typically introduces a certain amount of time-delay into a system. This study focused on the development of a delay-time adjustable input shaping method to eliminate vibration caused by repetitive motion in positioning systems. The proposed input shaping method, called the virtual mode (VM) input shaper, uses a virtual frequency parameter that adjusts delay-time and cancels residual vibration. Unlike most previous input shaping studies, this study investigated VM input shaping performance to eliminate the steady-state vibration induced by repetitive motion in positioning systems. To this end, an analytical formulation was derived and used for simulating the input shaping performance with varying dominant parameters involved in a system. Experiments were also performed to validate the proposed method.
Citations
Citations to this article as recorded by
Data Driven Vibration Control: A Review Weiyi Yang, Shuai Li, Xin Luo IEEE/CAA Journal of Automatica Sinica.2024; 11(9): 1898. CrossRef
Improved Input Shaping Method for Circular Interpolation of a 2-Axis Positioning System Jin Uk Sim, Pil Kyu Choi, Sun-Woong Kwon, Seong-Wook Hong Journal of the Korean Society for Precision Engineering.2022; 39(4): 283. CrossRef
Application of Input Shaping to a CNC Laser Processing Machine to Enhance Processing Precision Kang Ho Ko, Jin Uk Sim, Seong-Wook Hong Journal of the Korean Society of Manufacturing Technology Engineers.2022; 31(5): 346. CrossRef