Currently digital transformation has a huge impact on human lives. Digital transformation does not just mean a transformation of a (non-) physical element to a digitally identifiable element. It focuses on the utilization of digital technology for transforming (improving) procedures or routines of business and operation. The manufacturing industry has been adopting the most recent digital technology, and lots of digital data are being created. To utilize the stored data, data analysis is essential. Because the manufacturing data is created in a different format at every manufacturing step, the integration of the data is always the bottleneck of the data analysis. Querying of the right data at the proper time is fundamental for high-level data analysis. The digital thread is introduced to provide the inter-reference of digital data based on a context. This paper proposes a digital thread framework for the machining process. The context of the proposed framework consists of the questions of how the product will be machined, how it is (was) being produced, and how it was made. A prototype software was developed to verify the proposed framework by implementing the creating, storing, and querying modules for simulation, monitoring, and inspection data.
Citations
Citations to this article as recorded by
A Review of Intelligent Machining Process in CNC Machine Tool Systems Joo Sung Yoon, Il-ha Park, Dong Yoon Lee International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243. CrossRef
Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.
Citations
Citations to this article as recorded by
Current research trends in coolant application for machining Ti-6Al-4V alloy: a state-of-the-art review Prianka B. Zaman, N. R. Dhar Advances in Materials and Processing Technologies.2024; : 1. CrossRef
Comprehensive analysis of cutting temperature, tool wear, surface integrity and tribological properties in sustainable milling of Ti6Al4V alloy: LN2, nanofluid and hybrid machining Emine Şirin, Çağrı Vakkas Yıldırım, Şenol Şirin, Turgay Kıvak, Murat Sarıkaya Journal of Manufacturing Processes.2024; 131: 1360. CrossRef
Recent advancements in nano-lubrication strategies for machining processes considering their health and environmental impacts Kishan Zadafiya, Prassan Shah, Alborz Shokrani, Navneet Khanna Journal of Manufacturing Processes.2021; 68: 481. CrossRef
Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation Dae-Gyoun Park, Tae-Ho Kim, Eon-Chan Jeon Journal of the Korean Society of Manufacturing Process Engineers.2018; 17(6): 68. CrossRef
Friction and Wear Characteristics of Surface-Modified Titanium Alloy for Metal-on-Metal Hip Joint Bearing Hyeon-hwa Lee, Sungcheul Lee, Jong-Kweon Park, Minyang Yang International Journal of Precision Engineering and Manufacturing.2018; 19(6): 917. CrossRef