Falls are common among older people. Age-related changes in toe strength and force steadiness may increase fall risk. This study aimed to evaluate the performance of a fall risk prediction model using toe strength and force steadiness data as input variables. Participants were four healthy adults (25.5±1.7 yrs). To indirectly reproduce physical conditions of older adults, an experiment was conducted by adding conditions for weight and fatigue increase. The maximal strength (MVIC) was measured for 5 s using a custom toe dynamometer. For force steadiness, toe flexion was measured for 10 s according to the target line, which was 40% of the MVIC. A one-leg-standing test was performed for 10 s with eyes-opened using a force plate. Deep learning experiments were performed with seven conditions using long short-term memory (LSTM) algorithms. Results of the deep learning model were randomly mixed and expressed through a confusion matrix. Results showed potential of the model"s fall risk prediction with force steadiness data as input variables. However, experiments were conducted on young adults. Additional experiments should be conducted on older adults to evaluate the predictive model.
Transfer robots for large-sized panels used in the display industry need to compensate for path error and reduce vibration. The iterative learning control (ILC) technique can simply compensate for the uncertainty of a control system in a repetitive motion. This study introduces an ILC compensation system applied with an accelerometer to a display panel transfer robot control system. The ILC technique was used to reduce the path error and vibration induced the flexibility of the large size robot. This method was applied to a robot system without the system model of the mechanical and measurement elements. To improve the iterative learning performance through the accelerometer, the ILC is configured by applying an acceleration element and time shift method to the PD-Offline ILC algorithm. In addition, based on the characteristics of repetitive motion, the ILC derives an acceleration data-based position estimation value. In this study, the ILC system and a large-sized panel transfer robot were implemented in MATLAB-Simulink with RECURDYN. The path errors and vibration level of the robot with a suggested ILC of 20 repeated learnings were reduced by more than 90%.
Citations
Citations to this article as recorded by
Improving Path Accuracy and Vibration Character of Industrial Robot Arms with Iterative Learning Control Method MinSu Jo, Myungjin Chung, Kihyun Kim, Hyo-Young Kim International Journal of Precision Engineering and Manufacturing.2024; 25(9): 1851. CrossRef