Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

4
results for

"Acoustics"

Article category

Keywords

Publication year

Authors

"Acoustics"

REGULAR

Aerodynamic Flow Characteristics Inducing Centrifugal Compressor Noise Generation in High-speed Turbomachinery
Jihun Song, Chang Ho Son, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2025;42(9):763-770.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.088

Centrifugal compressor is a device that converts kinetic energy to increase the air pressure. It rotates at a high speed of up to 200,000 RPM and directly affects aerodynamic noise. Various studies have already been conducted, but the direct calculation method of acoustics based on the unsteady solution is inefficient because it requires a lot of resources and time. Therefore, flow characteristics and numerical comparison according to various aerodynamic factors predicted as a cause of noise generation were analyzed in this study based on the steady solution. High-frequency noise was calculated locally near the asymmetric flow properties. Vortex and turbulent kinetic energy were generated at similar locations. Among static components, a large-sized vortex of 3.48×107 s-1 was distributed at the location where the rotational flow around the compressor wheel combined with the inlet suction flow. In addition, a locally high vortex of 8.16×105 s-1 was distributed around the balancing cutting configurations that cause asymmetric flow characteristics. Analysis of these factors and causes that directly affect noise can be efficiently improved in the pre-design stage. Therefore, the efficient design methodology for centrifugal compressors that considers both performance and noise is expected based on the results of this study.

  • 33 View
  • 2 Download
Articles
A Study on Aero-Acoustics of High-Speed Turbomachinery for Different Rotational Speeds
Ji-Hun Song, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2020;37(12):897-904.
Published online December 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.072
This study is to numerically investigate the Aero-Acoustics of Turbocharger compressor. The turbocharger compressor is high-speed turbomachinery that rotates faster than 200,000 RPM. The Aero-Acoustics with five different rotational speeds (120,000, 150,000, 180,000, 200,000, and 220,000 RPM) is used herein. The fluid domain is designed by CATIA V5R21 and analyzed by ANSYS FLUENT V19.1 with compressible momentum equation. The Pressure-velocity coupling method of the solver is the coupled algorithm and calculated by a pressure-based method. Numerical analysis of the aero-acoustics by broadband noise sources model provides calculated sound-source and acoustic-level based on steady RANS. At the industrial site, it is important to quickly analyze the noise source. APL (Acoustic Power Level) with five different rotational speeds and sound characteristics based on flow factor at the compressor wheel was numerically calculated for the noise-based design. The maximum APL is located at blade tips in case of 120,000, 150,000 and 180,000 RPM. In the case of 200,000 RPM, the maximum APL is located at splitter tips. At more than 220,000 RPM, the maximum APL is located at the balancing cutting section of the wheel. In order to optimally design the high-speed turbomachinery, cutting sections and side locations of the wheel are essential factors to reduce physical noise.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review on Flow Regimes and Aeroacoustic Coupling in Subsonic Flow Around Flat Plates
    Atef El Khatib, Ahmad Al Miaari, Hassan Assoum, Ahmad Salem, Ali Hammoud
    Arabian Journal for Science and Engineering.2025; 50(12): 8753.     CrossRef
  • Aerodynamic Flow Characteristics Inducing Centrifugal Compressor Noise Generation in High-speed Turbomachinery
    Jihun Song, Chang Ho Son, Dong-Ryul Lee
    Journal of the Korean Society for Precision Engineering.2025; 42(9): 763.     CrossRef
  • 20 View
  • 0 Download
  • Crossref
Advanced Film-Type Acoustic Reflector Inspired by Helmholtz Resonator
Sung Ho Lee, Jin Ho Choi, Gyu Man Kim, Yong Rae Roh, Moon Kyu Kwak
J. Korean Soc. Precis. Eng. 2020;37(4):283-290.
Published online April 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.150
Sound waves propagate in a manner in which energy is transmitted by adjacent molecules in the medium. These adjacent molecules exhibit inherent sound wave characteristics, such as height and wavelength, depending on the sound frequency. The Helmholtz resonator, one of the well-known acoustic elements, comprises a neck and a cavity, and features a resonance at a specific frequency related to structural dimensions. The acoustic characteristics of the Helmholtz resonator can be explained by a lumped spring-mass system in mechanical engineering; the resonant frequency can be calculated with the same analysis. The Helmholtz resonator is widely used as an acoustic filter as it can re-radiate sound waves with the opposite phase and significantly attenuate the original sound wave in the resonance frequency range. In this study, we fabricated a Helmholtz resonator-inspired film-type acoustic absorber (FAA), comprising a microscale resonator array made with polydimethylsiloxane (PDMS). Through acoustic attenuation experiments, the FAA revealed that the novel attenuation values reached up to 36.3 dB mm-1. Additionally, a continuous fabrication of the FAA was achieved via a custom-built roll-type equipment.

Citations

Citations to this article as recorded by  Crossref logo
  • Fabrication and Performance Evaluation of the Helmholtz Resonator Inspired Acoustic Absorber Using Various Materials
    Sung Ho Lee, Bong Su Kang, Gyu Man Kim, Yong Rae Roh, Moon Kyu Kwak
    Micromachines.2020; 11(11): 983.     CrossRef
  • 24 View
  • 0 Download
  • Crossref
The Noise Reduction Effect by the Enclosure of Gas Turbines
Dae Hun Park, Yoo In Shin, Sung Gyu Park, Kang Il Kim, Chul Ki Song
J. Korean Soc. Precis. Eng. 2017;34(4):287-292.
Published online April 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.4.287
A gas turbine is the main equipment used in a combined heat and power plant. It generates a high sound pressure noise level. To reduce the noise level, an enclosure is installed around the turbine. The sound insulation performance of the enclosure affects the amount of external noise reduction. In this study, a sound transmission loss analysis is performed using the boundary element method to predict sound insulation performance according to the numbers and shapes of the supporter. Radiated noise analysis is also performed for the main external points of the enclosure using ray-acoustics. The results of these analyses are presented and a design plan is proposed that reduces the sound pressure noise level of the enclosure.
  • 19 View
  • 0 Download