There are no known studies on the changes in walking ability in patients with transfemoral amputations returning to daily activities after prosthetic gait training. The ability to walk after discharge may vary depending on an individual’s physical, psychological, and social factors. This study compared spatiotemporal variables and lower limb coordination ability at the end of training and one year after the end of training in seven unilateral transfemoral amputees and analyzed the factors affecting walking ability. The study results confirmed that there was no significant difference in spatiotemporal parameters such as walking speed and lower limb coordination ability after one year of training, and walking ability was well maintained after training. Five out of seven (71.4%) participants in this study returned to work, and there was a strong correlation between employment and gait improvement (r = 0.806, p < .05). In conclusion, activities such as social participation, employment, and exercise were very important factors in maintaining and improving an individual’s walking ability. The findings are intended to be used as basic data to provide guidelines for maintaining the health of lower limb amputees.
Gait analysis is the best objective measurement tool for monitoring rehabilitation. However, it has limitations to evaluate gait recovery. Previous studies have evaluated the effect of gait training using continuous relative phase. The objective of this study was to determine the effect of gait recovery by rehabilitation gait training on lower limb coordination. We analyzed spatio-temporal parameters and CRP values of hip and knee joints based on gait analysis data obtained by 3D motion analysis system at 15 days intervals in 24 uni-lateral transfemoral amputees participated in IRP. Our results revealed that walking velocity of uni-lateral transfemoral amputees who participated in the program during a mean of 107.1 days was 49.2% faster than that at initial stage. The walking velocity showed a 46% increase at the end of 30 days after training. In gait coordination, values of CRP-RMS and CRP-SD were increased and maintained in-phase pattern. CRP showed symmetry in both limbs at the end of 90 days after training. Therefore, CRP is a significant factor in the gait recovery process. Effects of various rehabilitation training methods can be determined through CRP analysis.
Citations
Citations to this article as recorded by
A Comparative Study of the Effects of Augmented Reality Application on Movement Accuracy and Subjective Satisfaction in Rehabilitation Training for Individuals with Lower Limb Amputations Yunhee Chang, Jungsun Kang, Hyeonseok Cho, Sehoon Park Applied Sciences.2025; 15(12): 6703. CrossRef
Changes in Gait Characteristics after Completion of Prosthetic Gait Training in Patients with Unilateral Transfemoral Amputation: Follow-Up after 1 Year Bo Ra Jeong, Gyoo Suk Kim, Yun Hee Chang Journal of the Korean Society for Precision Engineering.2022; 39(11): 849. CrossRef
Research involving discomfort or pain related to haptic vibratory stimulation the for prosthesis users of myoelectrical hand is very lacking. Our objective of this study was to evaluate the displeasure and sensitivity of areas in forearm using vibration stimulation system between upper limb amputees and non-amputees. Twenty transradial amputees and forty non-amputees (20 youth, 20 elderly) were involved. We set up custom-made vibration stimulation system including eight actuators (4 medial parts and 4 lateral parts) and GUI-based acquisition system, to investigate changes of residual somatosensory sensibility and displeasure at proximal 25% of forearm. Eight vibration actuators were attached to the circumference of proximal 25% point of forearm at regular intervals. Sensitivity tests were used to stimulate the 120㎐ and discomfort experiment was used to 37 ~ 223㎐. The subjective responses were evaluated by 10 point scale. The results showed that both groups were similar in sensitive areas. Response at around of radius was most sensitive than other areas in all subjects. Elderly group do not appear discomfort of vibrotactile; however, youth group and amputee presented discomfort of vibrotactile. Prosthesis with a vibrotactile feedback system should be developed considering the sensitivity. Furthermore, Future studies should investigate the scope of application of that principle.
A finite element simulation model was developed for the performance optimization of a closed type air-cell mattress used for the ulcer prevention. An H-model with material properties of human flesh and kinematic joints were used for the calculation of the body contact pressure. The material property of rubber air-cell was evaluated by tensile test of standard specimen. We evaluated the body contact pressure distribution after laying human model on the inflated air-cell mattress. It was found that the body contact pressure was dependent on cell height, but hardly affected by the thickness of the rubber in a cell.