The recent development of core techniques in the IT industry can be summarized as a technical advancement for safety and convenience, and mechanical technology for being “eco-friendly” and lightweight. Under these circumstances, research of lightweight material has become attractive. In this study, CFRP (Carbon Fiber Reinforced Plastic) laminate specimens are subjected to a tensile test using the UTM(Universal Testing Machine, AG-IS 100 kN) to estimate their mechanical properties in terms of the Hole machining impact evaluation. The FEM (Finite Elements Method) analysis method is applied and the material properties obtained from basic experiments such as the Tensile test, the compressive test, and the shear test. CFRP materials properties from a previous study, as well as a finite element analysis program for Hole machining CFRP was compared with the experiments.
Citations
Citations to this article as recorded by
Comparative Study on J-Integrals of SM45C, Short Fiber GFRP and Woven Type CFRP Shown at Crack through Analytical Method Jae Woong Park, Sung Ki Lyu, Jae Ung Cho Journal of the Korean Society for Precision Engineering.2019; 36(6): 567. CrossRef
Recent development of core techniques the IT electronics industry can condense into lightweight and slimmer. In this circumstance, researches for the lightweight materials and subminiature screw have been attracted. In this study, the CFRP was produced by stacking angle to obtain the tensile properties. And Comparing the coated screws and non-coated screws on the specimen, and evaluating the adequacy for the application of CFRP using the result. So The clamping force measured by comparison evaluation. Low screw reverse and Superior torque value at each stacking angle were found the optimum conditions, when Subminiature Screw is applied on smart devices. Both tensile strength and stiffness of [±0°]10 is the highest. Followed by [90°/0°]10 is the highest. The largest clamping torque is [90°/0°]10 When Subminiature Screw is applied coating and non-coating to prevent loosening. Based on the above, Subminiature Screw should be applied in smart devices, because [90°/0°]10 meet both tensile properties and clamping force.