Robots are increasingly utilized in manufacturing and logistics, where bin-picking has become crucial for managing randomly placed objects. However, traditional methods often rely on expensive 3D vision systems, have limited adaptability to unstructured environments, and primarily focus on the picking process, neglecting the placing tasks. To address these challenges, this study presents a cost-effective system that combines a depth camera, YOLO-based instance segmentation, and optimization-based inverse kinematics for real-time object detection and stable manipulation. In the placing stage, an adaptive algorithm detects empty tray holes and generates grid patterns, ensuring reliable placement even in the presence of tray misalignments, occupied slots, or partial occlusions. Experimental validation revealed a 91% success rate in mixed-object environments during picking tasks and a 94% success rate for placing tasks, even with tray displacement and occlusion conditions. The results demonstrate that the system maintains stable performance across both picking and placing processes while minimizing reliance on expensive hardware and complex initial setups. By enhancing flexibility and scalability, the proposed approach offers a practical solution for intelligent automation and can serve as a foundation for broader applications in assembly, logistics, and service robotics.
A circular flexure hinge is a core element for force transmission and relative motion of precision stages used in semiconductor processes. When designing a circular flexure hinge, calculation formulas for axial and rotational compliance are essential. However, in the case of axial compliance, results of the existing calculation formulas have significant differences from reliable finite element analysis results. In this study, calculation formulas for axial compliance of the circular flexure hinges were derived based on stress distribution phenomenon. Comparison with finite element analysis results confirmed that the newly developed calculation formulas were more accurate than existing ones. It is anticipated that these enhanced formulas will lead to more precise designs, ultimately reducing both time and costs in research and industry.
With advancements in semiconductor manufacturing processes and the development of precision processing technology, flexure hinge-based ultra-precision positioning stages are widely used. In the flexure hinge, axial and bending stiffness properties greatly influence positioning performance. This study examined the stiffness properties of elliptic and parabolic 2-degrees-of-freedom (DOF) hinges, which have not been extensively discussed. The Timoshenko beam theory was applied to derive the stiffness equations for the axial and bending directions of each hinge. The stiffness properties were examined in several design conditions by comparing theoretical and finite element analyses. Based on the results of the analyses, an empirical formula in exponential form for the design of an elliptic hinge was constructed through surface-fitting. The elliptic hinge was found to be a better alternative to a circular hinge under certain design conditions by adjusting two design parameters. In the future, we will develop sophisticatedly designed hinges with improved axial and bending stiffness properties compared to the existing circular and elliptic hinges.
Citations
Citations to this article as recorded by
Derivation and Verification of Novel Phenomenon-based Theoretical Formulas for the Axial Compliance of Circular Flexure Hinges Jun-Hee Moon, Hyun-Pyo Shin Journal of the Korean Society for Precision Engineering.2025; 42(1): 47. CrossRef
Precision positioning stages are devices for precisely positioning objects according to required degrees of freedom and performance. Precision positioning stages are classified into serial and parallel mechanisms. Except for specific applications, the parallel mechanism is preferred. In serial mechanism, dynamic characteristics such as resonant frequency are clearly different from axis to axis and the first resonance frequency is distinctly low compared to the second. These make the control performance different for each axis and incurs limitation in control. In this study, the first and second resonant frequencies in a serial 2-DOF precision positioning stage were increased while maintaining their approximal value. Compliance analysis for the stage was performed by applying the matrix based method. A new concept of resonant frequency isotropy (RFI) was introduced and design optimization was performed in which first and second resonant frequencies almost coincided. This optimization allowed for the design of a serial 2-DOF precision positioning stage with enhanced first resonance frequency by 50.8% and RFI by 80.2% compared to the initial design. This paper is expected to increase the use of precision positioning stages based on serial mechanism and apply the concept of RFI to the positioning stages with more than 2-DOF.
In recent years, the manufacture connector terminals of electronic devices require an accuracy of several microns and high productivity, thus the need to develop the ultra-high speed press technology. However, increased impulse and vibration of ultra-high speed press have reduced durability of stamping die and induced serious tool wear. To solve this problem, we investigate the changes of vibrations occurring in the die and press machine under ultra-high speed working condition by using a piezoelectric sensor. Moreover, by analyzing the design parameters such as stroke, stripper movement, and collision velocity of the die, impulse and vibration were decreased, thus improving the punch life by 50% under 2,000 SPM (stroke per minute) condition
This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.
This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.
This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.