This study investigated effects of energy levels, pulse durations, and pulse frequencies during an IPL (Intense Pulsed Light) sintering process on surface morphology and resistance of screen-printed Ag patterns on PET substrates. Surface characteristics, including primary profile (Pa), roughness (Ra), thickness, and sheet resistance, were measured before and after sintering. At fixed energy levels (13.18, 32.96, and 46.14 kW), increasing pulse counts (2, 5, and 7) at 6 ms durations significantly increased Pa and thickness, while Ra was not changed. In contrast, higher pulse counts (4, 10, and 14) at 3 ms durations improved surface roughness by reducing Ra. Statistical analysis (Paired T-test) confirmed these results. Sheet resistance analysis showed that lower pulse counts at 6 ms caused greater variability in resistance, stabilizing with higher counts. At 3 ms, surface resistance decreased with higher pulse counts, showing reduced variability. These results suggest that adjusting pulse conditions and counts during the sintering process can optimize both electrical properties and uniformity. Additionally, morphological changes before and after sintering indicated that these adjustments might influence upper-layer printability in multilayer printing. The study highlights the importance of considering both functional and morphological characteristics during sintering for optimized production of printed electronic devices.
Recently, there has been increasing demand for flexible electronic applications such as flexible displays, foldable smartphones, and flexible batteries based on flexible substrates. The roll-to-roll additive process has attracted tremendous attention regarding manufacturing such flexible electric devices because of its characteristics of eco-friendliness, large area of compatibility, and high flexibility, in contrast to traditional lithography or vaper evaporation methods. The mass production of roll-to-roll process tension control in precision is the most crucial assignment to be achieved. For the tension control, the load cell and dancer systems are used to regulate tension disturbance. A pendulum dancer system was extensively applied for unwinder or rewinder whose span length varied in the roll-to-roll printing and coating process. However, there have been an inadequate number of studies regarding tension control using the dancer system for mass production. In this paper, we propose a mathematical model of center pivot rotary dancer system revolving dual idle rolls around the pivot. Parametric studies are conducted as a function of inertia, span length, width of substrate, and operation velocity. Additionally, an impulse response was conducted for the time domain analysis. These results can be used for the mass production of roll-to-roll additive process.