This paper proposes a novel method for evaluating the performance of control modalities related to driving a wheel loader, according to the framework of Fitts’ law and the steering law. Fitts’ law is an empirical model for the evaluation of human performance. This model is widely used in human factors studies. The steering law is an extension of Fitts’ law, and this law is used especially for evaluating driving performance. To evaluate a driver’s performance, we carried out driving simulations of V-Shaped driving tasks based on ISO 5010 steering requirements. The simulation model of the Doosan DL400 class wheel loader was developed using an Open Dynamics Engine (ODE), and the steering performance of the model was tested with a human subject by using a driving simulator. The steering performance was analyzed with three different parameters: the maximum velocity, the steering ratio, and the friction coefficient. The simulation results show that the steering performance was consistent with both Fitts’ law and the steering law. The completion time was corrected linearly with an index of difficulty, with r2 being between 0.95 and 0.99. These results suggest that the proposed method is feasible for providing a quantitative tool that can be used to design the control modalities of wheel loaders.
Citations
Citations to this article as recorded by
Development of Real-time Remote Driving Simulator based on Multi-body Dynamics Suhyun Park, Jeonghyun Sohn, Xiangqian Zhu Journal of the Korean Society for Precision Engineering.2024; 41(6): 473. CrossRef
The construction automation provides safer and more productive working environment of construction site. We developed the automation system of bolting operation for high-rise building in the previous research. However, this system has a weak point that the operation has to be processed in the air with the operator in the cabin. This weakness leads operators to considerably dangerous environment. Therefore, we proposed the tele-operation system in order to supplement this weak point. Furthermore, it leads more effective operation by application of more intuitive controller; spherical coordinate based Master Arm than the joystick in the Mobile Bolting Robot system. These proposed system and controller were evaluated based on Fitts’ law paradigm, which is a general estimation method of speed accuracy of task. Through the experimental results, new developed tele-operation system is compared with the actual operation and it discloses distinctions between two systems. As a result, it is found that new developed teleoperation system can be possible to replace the operation in the cabin.
Recently, robots have been used in surgical area. Robotic surgery in Minimally Invasive Surgery gives many advantages to surgeons and patients both. This study introduce a robotic assistant to improve the safety of telerobotic Minimally Invasive Surgical procedures. The master-slave system is applied to the telerobotic surgical system with the master arm, which control the system, and slave robot which operates the surgery on the patient body. By using a 3-DOF master arm, the surgeon can control the 6-DOF surgical robot under the constraint of fulcrum point. This paper explains the telerobotic surgical system and confirms the system with the precision of the robot control related to the fulcrum point to enhance the safety.