Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Jin Kyu Choi"

Article category

Keywords

Publication year

Authors

"Jin Kyu Choi"

Articles
High-frequency Heat Treatment Simulation of Park Gear considering Coil Current Calculation and AISI 1552 Phase Transformation
Jin Kyu Choi, Seok Soon Lee
J. Korean Soc. Precis. Eng. 2023;40(5):399-407.
Published online May 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.136
This study performed high-frequency heat treatment experiments and simulations of the park gear of an automobile transmission. The heating temperature and hardening depth were measured during high-frequency heat treatment. Moreover, by applying the resonance RCL circuit, the current value of the coil during high-frequency heat treatment, the electromagnetic and heat transfer material properties dependent on the temperature, and the phase transformation function were all applied to the simulation. In the high-frequency heat treatment experiment, the heating temperature was 977.4℃ and the 1st direction hardening depth was 1.5 mm, the 2nd direction hardening depth was 3 mm, and the 3rd direction hardening depth was 2.5 mm, and the reliability was verified by comparing the simulation heating temperature of 1,097℃ and the 1st direction predicted hardening depth of 1.6 mm, the 2nd direction predicted hardening depth of 2.8 mm, and the 3rd direction predicted hardening depth of 2.7 mm. The error rate of the heating temperature results was 12.2% whereas that of the hardening depth results was 7.1%.
  • 56 View
  • 0 Download
Study on Hardening Depth by Induction Hardening Analysis of Sprocket Using FEA and Experiment Results
Jin Kyu Choi, Kwang Sik Nam, Jae Ki Kim, Ho Min Choi, Sang Hoon Yeum, Seok Soon Lee
J. Korean Soc. Precis. Eng. 2016;33(5):393-400.
Published online May 1, 2016
High frequency induction heating (HFIH) is used in many industries and has a number of advantages, including reliability and repeatability. It is a non-contact method of providing energy-efficient heat in the minimum amount of time without using a flame. Recently, HFIH has been actively studied using the finite element method (FEM), however, these studies only focused on the accuracy of the analysis. In this paper, we can measure joule heat distributions by the electromagnetic analysis for HFIH and the temperature distribution from the heat transfer analysis by applying joule heat for a sprocket. The sprocket is heated over 850℃ due to joule heat and then cooled to under 200℃ by using cooling 20℃ water. These processes were used to calculate the FEM and then compared to our experimental results. The calculated outcome may be used to predict hardening depth in HFIH.
  • 21 View
  • 0 Download