CFRP (Carbon fiber reinforced plastic) has been widely used in different industries such as aerospace, automobile, sports and medical. Laser processing of CFRP has a great potential for industrial applications. In this paper researched the micro cutting and drilling of CFRP with 0.5 mm thickness using 1064 nm ytterbium nanosecond pulsed fiber laser. It also investigated machining characteristics of micro cutting and drilling according to laser power, frequency, scan speed and number of scan (or irradiation). Complete cutting and through-hole drilling were achieved with low frequency when the laser power was low and with low and middle frequency when the laser power increased. However, those were not achieved a frequency of 100 kHz. The cutting width increased when the power increased and decreased when the frequency and the scan speed increased. The hole size increased when the power and the number of irradiation increased and decreased when the frequency increased. In the case of micro hole array, the hole was blocked during the next hole machining when the hole spacing was narrow. The resin was melted by the heat thus blocking the pre-drilled hole. We devised the laser scan method, and the micro hole array with narrow hole spacing was fabricated successfully.
Citations
Citations to this article as recorded by
Laser Drilling of Micro-Hole Array on CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(5): 92. CrossRef
Laser EDM Hybrid Micro Machining of CFRP Do Kwan Chung, Chan Ho Han, Yu Jin Choi, Jun Seo Park Journal of the Korean Society for Precision Engineering.2023; 40(2): 99. CrossRef
Micro Pin Fabrication of Tungsten Carbide Using Polycrystalline Diamond Joo A Park, Ui Seok Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2020; 37(11): 791. CrossRef
An essential mechanical element in an industrial machine is a reducer, which transfers the rotation of an electrical motor or engine to another part with amplified torque. Some reducers, such as planetary reduction gears, a harmonic reducer, or a cycloid reducer, have been applied in various industries. Given the increase of demand for reducers with high precision, compact size, and high load capacity for use in industrial robots, the cycloid reducer has stood out. The cycloid reducer, compared with planetary reduction gears, has some merits, which include a larger reduction gear ratio at only one stage, higher durability, improved efficiency, and a larger torque because of its high tooth-contact ratio despite its being small. This paper presents a design technique for a cycloid reducer intended, because of those merits, for use in remote weapons systems of armed vehicles. In order to verify the performance of the cycloid reducer, we carried out experiments and analyzed the results systematically.
Citations
Citations to this article as recorded by
Trochoid Gear Transmission Synchronized to Backward Driving Prevention Brake of Manual Wheelchair for Improved Driving Capability on Ramps Bu-Lyoung Ahn, Seok Hyeon Jo, Hyun Duk Moon, Kyung Sun, Du-Jin Bach Journal of the Korean Society for Precision Engineering.2020; 37(1): 67. CrossRef
A Review of Recent Advances in Design Optimization of Gearbox Zhen Qin, Yu-Ting Wu, Sung-Ki Lyu International Journal of Precision Engineering and Manufacturing.2018; 19(11): 1753. CrossRef