In the field of construction automation, significant research efforts continue to focus on replacing human labor; however, the varied and dynamic nature of construction sites still requires human intervention. The high task intensity in construction sites, particularly in lifting heavy materials, frequently results in musculoskeletal disorders among workers. To address this issue, this paper proposes a lifting device to replace manual material transportation through an opening between floors. The lift is designed with a gear-constrained double parallelogram mechanism to enable straight vertical movement. Moreover, a crank-rocker mechanism is incorporated to improve efficiency in repetitive tasks, reduce the required driving torque, and simplify control complexity. Additionally, this study introduces a passive gravity compensation mechanism that employs springs and cables, tailored to the lifting process, to enhance payload capacity and stabilize actuation. Through the integration of these mechanisms, the necessary motor capacity and control costs are significantly reduced. The effectiveness of the device is validated by actuation experiments with a fabricated prototype.
Citations
Citations to this article as recorded by
Complete gravity balancing of the general four-bar linkage using linear springs Chin-Hsing Kuo Mechanism and Machine Theory.2025; 214: 106140. CrossRef
Many human movements can be aided by exo-suit. One of them is that humans put a lot of strain on their knee and waist joints while lifting large objects, but using an exo-suit can lessen the risk. However, since the weight of the exo-suit itself acts as an additional burden on body, an appropriate torque distribution strategy considering the entire system is necessary. To solve this problem, this paper proposed an assistive technique based on whole-body control. Meanwhile, when the legs are fully extended during torque control, the system has a singularity problem and the required torque will be highly increased. Singularity is serious problem because it is essential to fully straighten the legs during the lifting operation. In this paper, this problem was solved by adding a straight-leg term to the whole-body control cost function. The feasibility of the proposed method was verified through simulation, and it was shown that the exo-suit could stably perform lifting motions due to the method.
Citations
Citations to this article as recorded by
Comparative Analysis between IMU Signal-based Neural Network Models for Energy Expenditure Estimation Chang June Lee, Jung Keun Lee Journal of the Korean Society for Precision Engineering.2024; 41(3): 191. CrossRef
Many of the workers are exposed to work that burdens the musculoskeletal system, and musculoskeletal diseases, such as low back pain, are increasing every year. Various muscle support systems, such as wearable robots, have been developed to prevent musculoskeletal diseases at industrial sites, but the system is bulky. Therefore, the total weight is high, it is inconvenient to wear, and the wearer cannot freely perform the activities when power is not supplied. In this paper, in order to compensate for the shortcomings of the hard-type wearable robot system, a soft-type wearable suit using an elastic band was manufactured so that it is light and portable, as it does not require an actuator. The experiment was conducted to verify the effect of muscle strength assistance through an experiment (Measurement of Maximum Waist Torque and Measurement of the Approximate Dose) on the effect of the soft wearable suit. In addition, by making two different types of elastic bands in the wearable suit, it was possible to classify the more effective types for the waist and lower extremities according to the elasticity by comparing the muscle strength assisting effect according to the elastic band.
Citations
Citations to this article as recorded by
EMG and Usability Assessment of Adjustable Stiffness Passive Waist-Assist Exoskeletons for Construction Workers Jung Sun Kang, Bo Ra Jeong, Eung-Pyo Hong, Bok Man Lim, Byung June Choi, Youn Baek Lee, Yun Hee Chang International Journal of Precision Engineering and Manufacturing.2025; 26(1): 227. CrossRef
Development of lifting-assistive passive functional pants for construction works Jin Zhi Chen, Jeong Eun Yoon, Zi Ying Liu, Sung Kyu Lee, Sumin Helen Koo Textile Research Journal.2025;[Epub] CrossRef
Effects of the Wearable Assistive Suit on Muscle Activity during Lifting Tasks Kwang Hee Lee, Chul Un Hong, Mi Yu, Tae Kyu Kwon Journal of the Korean Society for Precision Engineering.2024; 41(1): 47. CrossRef
Design development and evaluation of arm movement-assistive suits for lifting and movement for industrial workers considering wearability Jiwon Chung, Jung Eun Yoon, Soah Park, Hyunbin Won, Suhyun Ha, Sumin Helen Koo International Journal of Industrial Ergonomics.2024; 103: 103616. CrossRef
Enhancing wearability: designing wearable suit platforms for industrial workers Jiwon Chung, Hyunbin Won, Hannah Lee, Soah Park, Hyewon Ahn, Suhyun Pyeon, Jeong Eun Yoon, Sumin Koo International Journal of Clothing Science and Technology.2024; 36(3): 526. CrossRef
An elevating drone station is very useful when lifting and lowering the battery charging station for safe installation, maintenance, and energy efficiency of a drone operation. When drone station modules rise above the average roof level of neighboring structures they may receive a strong wind force; thus, understanding the physical phenomena of both the structures and fluid is important to understand the structure"s reaction to the wind force. However, most studies in the field of drone stations did not perform a structural safety evaluation under wind loadings. Therefore, in this paper, we carried out a fluid-structure interaction analysis to verify the design of the lifting-and-lowering-type drone station.
The lifting-and-lowering type drone station is very useful when lifting and lowering the battery charging station for safe installation, maintenance, and energy efficiency of drone operation. Therefore, understanding the coupling motion between cable and pulley is important for evaluating characteristics like safety and dynamic stability of the lifting-and-lowering type drone station. Although multibody dynamics (MBD) is widely used for numerically analyzing the dynamic behavior of interconnected bodies, attempts to analyze the coupling motion between cable and pulley have been made only recently, within the last decade. Therefore, this paper attempts to develop the MBD model for the lifting-and-lowering type drone station, including cables, pulleys, and winches using MotionSolve (Altair). The results of the winch torque obtained analytically and numerically were compared to verify the effectiveness of the proposed MBD model.
Citations
Citations to this article as recorded by
A Study on Improving the Sensitivity of High-Precision Real-Time Location Receive based on UWB Radar Communication for Precise Landing of a Drone Station Sung-Ho Hong, Jae-Youl Lee, Dong Ho Shin, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh Journal of the Korean Society for Precision Engineering.2022; 39(5): 323. CrossRef
Farming is a typical task that includes repetitive tasks, incomplete working positions, and weight work, along with exposure to a number of musculoskeletal diseases and harmful factors. Therefore, in this study, work clothes were developed for older agricultural workers exposed to musculoskeletal diseases and alienated from the medical system. Work clothes can help in repetitive cropping and support the load on the work, preventing and mitigating farmers" diseases. To verify the effectiveness of the developed clothing, six men in their 20s were evaluated for muscle usage before and after wearing the clothing in two ways: stoop lifting and squat lifting. The results of this study showed that the mass of most muscles, except the gastrocnemius muscle, was reduced during lifting operations by stoop lifting after wearing work clothes. The reason why the gastrocnemius was more activated was that the ankle joint was greatly activated by dorsal flexion. For squatting and lifting, most of the muscle usage was reduced. In future research, we want to analyze the muscle characteristics of actual agricultural workers on wearing work clothes.
This paper deals with the development of a passive modular hip exoskeleton system aimed at preventing musculoskeletal low back pain, which commonly occurs in heavy weight transport workers, by improving back muscle strength. The passive exoskeleton system has the advantage of being lightweight, making it suitable for modular exoskeleton systems. The cam and spring actuator designed in this study was applied to the passive modular exoskeleton system to build human hip and lumbar muscle strength. In order to evaluate the effectiveness of the passive modular exoskeleton system, a test was performed in which a subject lifted a 15 kg weight three times in a stoop posture, using heart rate measurement and Borg scale recording. According to the results, all subjects showed 26.83% lower maximum heart rate and 34.73% lower average heart rate than those who did not wear the system, and Borg scale evaluation result was lower. All subjects wore this system and did not experience back pain during the experiment. Through this study, we validated the effectiveness of the passive modular exoskeleton system and proved that this system can build the strength of industrial workers and be a solution to prevent musculoskeletal lumbar disease.