The future mobility industry is increasingly utilizing advanced tools for cutting and machining lightweight parts to enhance the fuel efficiency of automotive engines. Machining companies are turning to polycrystalline diamond (PCD) tools to boost productivity in the production of these lightweight components. PCD tools provide exceptional machining performance and a long service life, making them ideal for high-mix, low-volume production, which often involves customized requirements for various materials. To further improve efficiency, this study explores the application of metal 3D printing technology in the manufacturing of PCD tools. This technology allows for the creation of PCD tools with superior cutting performance and wear resistance, tailored for high-speed machining of lightweight materials, including complex shapes. Thus, research into this area is essential. In this study, we manufactured boring tools by brazing PCD tips onto three different laminated structures created using Fused Deposition Modeling (FDM), a method within metal 3D printing technologies. We then evaluated the fabricated boring tools through comparative machining experiments against existing sintered PCD boring tools. The results indicated that the 3D-printed solid tools demonstrated no significant differences in machining accuracy or surface quality compared to the conventional tools.
In recent years, the demand for lightweight parts has been gradually increasing, particularly in the E-mobility industry. Among lightweight materials, aluminum alloys are highly beneficial for improving the fuel efficiency of automobile engines due to their lighter weight compared to iron-based materials. As electric vehicles become more prevalent, aluminum alloys are also extensively used in components such as battery housings and EV platform frames. To enhance productivity, aluminum parts processing companies require Polycrystalline Diamond (PCD) cutting tools for high-speed and ultraprecision processing. PCD cutting tools are known for their excellent cutting performance and wear resistance in highspeed aluminum machining, and they are anticipated to have significant growth potential in the global cutting tool market. In this study, we manufactured three types of PCD cutting tools (Drill, Endmill, and Reamer) using a self-developed brazing device and analyzed the machining surface quality through experiments. The results showed that the brazing joint quality of the PCD cutting tools was high, and the differences in surface roughness values under various machining conditions were minimal, confirming no issues with machining performance. Future research will focus on evaluating machining precision and tool life through comparative experiments with advanced PCD cutting tools from overseas.