With regard to 3D orientation estimation based on IMMU (Inertial Magnetic Measurement Unit) signals, the yaw estimation accuracy may be significantly degraded as a result of magnetic distortions. Consequently, several yaw estimation Kalman filters (KFs) possessing distortion compensation mechanisms have been proposed. However, majority of the conventional methods fail to effectively curb inaccuracies due to distortion when magnetic fields are extremely distorted. In this paper, we propose a new KF projecting a kinematic constraint to minimize yaw estimation errors induced by magnetic distortions. After the measurement update using magnetometer signals, the proposed method additionally corrects the yaw estimation through projection of a kinematic constraint on a conventional unconstrained KF. Experimental results show that the proposed KF outperformed the conventional KF by approximately 52-67%.