Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

5
results for

"Material extrusion"

Article category

Keywords

Publication year

Authors

"Material extrusion"

Articles
Study on the Reduction of Food Fabrication Time in Additive Manufacturing Process Using Dual Nozzle
Seung Yeop Baik, Ju Ho Park, Sang In Kang, In Hwan Lee
J. Korean Soc. Precis. Eng. 2021;38(11):879-884.
Published online November 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.070
Additive manufacturing requires a relatively long time to fabricate complex three-dimensional (3D) structures or parts with more than one material. For additive manufacturing processes, production time and precision vary depending on the fabrication conditions. In this study, we developed a food additive manufacturing process of the material extrusion method type using a dual nozzle. In addition, we observed the change in the cross-sectional shape of the discharged food line according to each fabrication condition. By using a dual nozzle, the structure was fabricated under conditions of relatively high precision for the outer wall and relatively low precision for the infill, thereby shortening the production time. Through this process, it can be expected that the production time will be shortened in the food field, while the appearance will be of good quality.
  • 34 View
  • 0 Download
A Study on Development of a Reusable Protective Face Shield Using a Material Extrusion Process
An-Jae Hwang, Dong-Gyu Ahn
J. Korean Soc. Precis. Eng. 2021;38(7):549-556.
Published online July 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.034
Due to the pandemic of SARS-CoV-2 (COVID-19) virus, the demand for personal protective equipment (PPE), including face shield, ventilator value, and so on, has abruptly increased in the world. The collapse of the global supply chain of PPE has led to a shortage of the PPE. An additive manufacturing process has emerged as one of solutions to overcome such shortage. The objective of this study was to develop a reusable protective face shield using a material extrusion (ME) process. Five types of face shield were designed. Effects of the design on effective stress distribution, deformation, and specific rigidity were investigated through finite element analyses. To examine the influence of the design on deposition and post-processing characteristics, five types of face shield were fabricated from a ME apparatus. Post-processing characteristics and building time were greatly improved when Design 1 was adopted. In addition, the overall weight, wasted material, and buy-to-fly (BTF) ratio were significantly reduced when Design 1 was applied. Finally, results of wearing and droplet spreading experiments showed that the fabricated face shield for Design 1 was applicable to protection of droplet spreading.

Citations

Citations to this article as recorded by  Crossref logo
  • Investigation of Applicability of Additive Manufacturing Processes to Appropriate Technologies for Developing Countries
    Dong-Gyu Ahn
    Academic Society for Appropriate Technology.2021; 7(2): 188.     CrossRef
  • 51 View
  • 0 Download
  • Crossref
Development of DLP 3D Printer with Multiple Composite Materials
SoRee Hwang, JongWon Lee, SoHyang Lee, DaeGi Hong, MinSoo Park
J. Korean Soc. Precis. Eng. 2020;37(5):381-388.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.128
Since most commercialized DLP 3D printers fabricate 3D structures by sinking materials to Vat using a bottom-up method, it is difficult to use various materials simultaneously and there are many restrictions on printing composite materials. Especially, composite resin mixed with various functional powders in photo curable resin generally has high viscosity, causing difficult material flow in the bottom-up method when using Vat. Additionally, most of the previously presented methods for fabricating multi-material structure use individual curing for each material, so the adhesion force at the contact surface is less than 50% compared to single material. Thus, in this paper, we propose a new type of DLP 3D printer that combines Material Extrusion and the DLP system. The proposed equipment can supply high viscosity composite material resins to a specific area to cure various materials simultaneously. This method will enable fabrication of multiple composite material structures with sufficient adhesion force. The tensile test will be performed to verify suitability of the proposed method.

Citations

Citations to this article as recorded by  Crossref logo
  • Evaluation of Bond Strength in Multi-Material Specimens Using a Consumer-Grade LCD 3D Printer
    Shunpei Shimizu, Masaya Inada, Tomoya Aoba, Haruka Tamagawa, Yuichiro Aoki, Masashi Sekine, Sumihisa Orita
    Journal of Manufacturing and Materials Processing.2025; 9(10): 332.     CrossRef
  • Development of a Material Mixing Extrusion Type Chocolate 3D Printer
    MinSoo Park, HyungJik Jeong, JaeHyuek Moon, JungMuk Lim
    Journal of the Korean Society for Precision Engineering.2021; 38(2): 145.     CrossRef
  • Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods
    Myung-Hwi Jung, Jeong-Ri Kong, Hae-Ji Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(1): 66.     CrossRef
  • Property Analysis of Photo-Polymerization-Type 3D-Printed Structures Based on Multi-Composite Materials
    So-Ree Hwang, Min-Soo Park
    Applied Sciences.2021; 11(18): 8545.     CrossRef
  • 59 View
  • 1 Download
  • Crossref
Property Analysis of Multi-Material Specimen based on ME Type 3D Printer
Sohyang Lee, Chaeeun Shin, Minji Jung, MinSoo Park
J. Korean Soc. Precis. Eng. 2020;37(3):231-238.
Published online March 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.122
The necessity for printing multi-materials has increased as the importance of 3D printing grew in various industries. Many studies have undertaken for printing multi-materials simultaneously. In ME (Material Extrusion) type 3D printers, the method of printing different materials using multi nozzles is generally commercialized. Polymers with different composition are hardto-mix with each other, making it difficult to maintain the structural strength of printer parts. So the MJ type 3D printer uses a unique method that mixes multi-materials in a liquid state before printing. In the ME type 3D printer, there were also efforts to mix materials in a melted state, but they were mainly demonstrated for multi-colored parts. In this study, the effect of multi-material mixing on structural strength changes was tested. Multi-Materials were printed with the ME type 3D printer by using one nozzle with a multiple filament feeding system. The bending and tensile tests were conducted to verify the structural characteristics.

Citations

Citations to this article as recorded by  Crossref logo
  • Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer
    Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho
    Journal of the Korean Society for Precision Engineering.2023; 40(9): 719.     CrossRef
  • Analysis of Correlation between FDM Additive and Finishing Process Conditions in FDM Additive-Finishing Integrated Process for the Improved Surface Quality of FDM Prints
    Ji Won Yu, Hyung Jin Jeong, Jae Hyung Park, Dong Hun Lee
    Journal of the Korean Society for Precision Engineering.2022; 39(2): 159.     CrossRef
  • Study on the Reduction of Food Fabrication Time in Additive Manufacturing Process Using Dual Nozzle
    Seung Yeop Baik, Ju Ho Park, Sang In Kang, In Hwan Lee
    Journal of the Korean Society for Precision Engineering.2021; 38(11): 879.     CrossRef
  • Property Analysis of Photo-Polymerization-Type 3D-Printed Structures Based on Multi-Composite Materials
    So-Ree Hwang, Min-Soo Park
    Applied Sciences.2021; 11(18): 8545.     CrossRef
  • Development of a Material Mixing Extrusion Type Chocolate 3D Printer
    MinSoo Park, HyungJik Jeong, JaeHyuek Moon, JungMuk Lim
    Journal of the Korean Society for Precision Engineering.2021; 38(2): 145.     CrossRef
  • 57 View
  • 0 Download
  • Crossref
Multi-Material Additive Manufacturing Process for 3-Dimensional Circuit Device Fabrication
Sung Taek Oh, In Hwan Lee, Ho-Chan Kim, Hae-Yong Cho
J. Korean Soc. Precis. Eng. 2018;35(3):349-354.
Published online March 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.3.349
Recently, various attempts have been made to apply the additive manufacturing technology directly to fabricate a product. In this regards, the industry is focusing on the multi-material additive manufacturing technology that can processes multiple materials simultaneously. This study is about the fabrication of a 3-dimensional circuit device (3DCD), based on the multimaterial additive manufacturing technology, which is combination of the material extrusion and the direct writing processes. The multi-material additive manufacturing system was developed based on the commercial multi-head FDM system. In addition, a contact type nozzle for the dispensing of the conductive material in the direct writing process is proposed. The 3-dimensional circuit device in which circuit elements are arranged on several layers was fabricated successfully, based on the presented multi-material additive manufacturing system.

Citations

Citations to this article as recorded by  Crossref logo
  • Application of Image Recognition Technology in Nozzle Cleaning for Material Extrusion Additive Manufacturing Processes
    Ho-Chan Kim, Yong-Hwan Bae, Hae-Yong Yun, In-Hwan Lee
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(11): 20.     CrossRef
  • Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer
    Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho
    Journal of the Korean Society for Precision Engineering.2023; 40(9): 719.     CrossRef
  • Study on the Reduction of Food Fabrication Time in Additive Manufacturing Process Using Dual Nozzle
    Seung Yeop Baik, Ju Ho Park, Sang In Kang, In Hwan Lee
    Journal of the Korean Society for Precision Engineering.2021; 38(11): 879.     CrossRef
  • Optimization of Manufacturing Conditions of Pressure-Sensitive Ink Based on MWCNTs
    Sung-Chul Park, In-Hwan Lee, Yong-Hwan Bae, Ho-chan Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2019; 18(8): 1.     CrossRef
  • 63 View
  • 0 Download
  • Crossref