Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

4
results for

"Min Gyu Kim"

Article category

Keywords

Publication year

Authors

"Min Gyu Kim"

Articles
2-D Topology Optimization of the Connection Part of the Electric Kickboard in Case of Front Collision
Min Gyu Kim, Ji Sun Kim, Jung Jin Kim
J. Korean Soc. Precis. Eng. 2022;39(11):841-848.
Published online November 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.068
Electric kickboards provide personal mobility with a simple structure and easy operation. With these advantages, the number of users is increasing annually. However, as the number of users of electric kickboards increases, related accidents are also increasing. To prevent accidents, this study proposes the topological optimization of an electric kickboard connecting part to improve structural strength during a front collision. The results confirmed that as the volume fraction increased, the structure connecting the board and the bottom of the handle support changed to a toroidal shape, thereby lowering the maximum stress and improving the uniformity of the stress distribution. In addition, the topological optimization was safer than the connecting parts of two typical electric kickboards sold in the Korean market. These findings can contribute to improving the safety and optimizing the design direction of electric kickboards.

Citations

Citations to this article as recorded by  Crossref logo
  • Two-Dimensional Topology Optimization of Headtube in Electric Scooter Considering Multiple Loads
    Min Gyu Kim, Jun Won Choi, Jung Jin Kim
    Applied Sciences.2025; 15(5): 2829.     CrossRef
  • Personalized Stem Length Optimization in Hip Replacement: A Microscopic Perspective on Bone—Implant Interaction
    Su Min Kim, Jun Won Choi, Jung Jin Kim
    Bioengineering.2024; 11(11): 1074.     CrossRef
  • 53 View
  • 0 Download
  • Crossref
5-D.O.F. Force/moment Sensor using Optical Intensity Modulation in MR-field
Min Gyu Kim, Dong Hyeok Lee, Nahm Gyoo Cho
J. Korean Soc. Precis. Eng. 2013;30(5):520-528.
Published online May 1, 2013
A 20 mm diameter of small 5-D.O.F. force sensor has been developed for applications in MR-field Optical intensity modulation was adopted for transducing to miniaturize the sensor structure. For its accurate sensing of 5-D.O.F. force/moment, the elastic detecting module was designed to respond independently to each force or moment component. And for small size, two optical transducing modules of 2-D.O.F. and 3-D.O.F. were designed and integrated with the detecting module where optical fibers were arranged in parallel to make the sensor small. It is confirmed by calibration test that the detecting modules deforms linearly and independently to the input force. The results of evaluating test show that the range and resolution of forces are ±4 N and 0.94~7.1 mN and the range and resolution of moments are ±120 N·mm and 0.023~0.034 N·mm.
  • 18 View
  • 0 Download
A Study on the Design of Flexible Display Considering the Failure Characteristics of ITO Layer
Min Gyu Kim, Sang Baek Park, Soo-Won Chae
J. Korean Soc. Precis. Eng. 2013;30(5):552-558.
Published online May 1, 2013
In recent years the interest on flexible display has been increasing as a future display due to its bendable characteristics. An ITO(indium tin oxide) layer, which is part of a flexible display, can be broken easily while bending because it is made of brittle materials. This brittle property can cause the malfunction of flexible display. To analyze fracture characteristics of ITO layer, bending test was conducted commonly. However, it is not possible to know specific phenomena on bended ITO layer by simple bending test only. Accordingly, in this study, the FE(finite element) model is developed similarly to a real flexible display to analyze stress distribution of flexible display under bending condition, especially on ITO layer. To validate FE model, actual bending test was conducted and the test results were compared with the simulation results by measuring reaction forces during bending. By using the developed model, FE analysis about the effect of design parameter (Thickness & Young’s Modulus of BL) on ITO Layer was performed. By explained FE analysis above, this research draws a conclusion of reliable design guide of flexible display, especially on ITO layer.
  • 17 View
  • 0 Download
Development of Multi-Degree of Freedom Carbon Fiber Plate Force/Torque Sensor
Dong Hyeok Lee, Min Gyu Kim, Nahm Gyoo Cho
J. Korean Soc. Precis. Eng. 2012;29(2):170-177.
Published online February 1, 2012
A force/torque sensor using carbon fiber plate was designed and developed to make the sensor be able to measure a wide range of multi degree of force and torque. Using carbon fiber plate of 0.3 mm thickness, the sensor was designed and developed, which has a μN level order of resolution and about 0.01 N ~ 390 N of wide measurement range. The elastic deformation part has a tripod plate structure and strain gauges are attached on the part to detect the force/torque. The coefficient of determination for the sensor is over 0.955 by the calibration experiment so that the linearity of the sensor is confirmed to be good. Also, experiments on applying 0.005 ~ 40 ㎏ (0.05 ~ 390 N) to each axis were implemented and the sensor is proved to be safe under a high load. Finally, to verify the function calculating the direction of load vector, the directions of various load vectors which have the same magnitude but different directions and the directions of the calculated load vectors are compared and analyzed to accord well.
  • 19 View
  • 0 Download