Estimation of the relative position between the body segments is an important task in inertial sensor-based human motion tracking. Conventionally, the relative position is determined using orientations and constant segment vectors that connect from segment to joint center, based on the assumption that the segments are rigid. However, the human body segments are non-rigid, which leads to an inaccurate relative position estimation. This paper proposes a relative position estimation method based on inertial sensor signals, considering the non-rigidity of the human bodies. Considering that the effects of non-rigidity are highly correlated with a specific variable, the proposed method uses time-varying segment vectors determined by the specific physical variable, instead of using constant segment vectors. Verification test results for an upper-body model demonstrates the superiority of the proposed method over the conventional method: The averaged root mean square error of the sternum-to-forearm estimation from the conventional method was 34.19 ㎜, while the value from the proposed method was 16.67 ㎜.
Citations
Citations to this article as recorded by
Wearable Inertial Sensors-based Joint Kinetics Estimation of Lower Extremity Using a Recurrent Neural Network Ji Seok Choi, Chang June Lee, Jung Keun Lee Journal of the Korean Society for Precision Engineering.2023; 40(8): 655. CrossRef
Ergonomic guidelines for the design interfaces of additive modules for manual wheelchairs: sagittal plane Bartosz Wieczorek, Mateusz Kukla, Łukasz Warguła, Marcin Giedrowicz Scientific Reports.2023;[Epub] CrossRef
Effects of the Selection of Deformation-related Variables on Accuracy in Relative Position Estimation via Time-varying Segment-to-Joint Vectors Chang June Lee, Jung Keun Lee JOURNAL OF SENSOR SCIENCE AND TECHNOLOGY.2022; 31(3): 156. CrossRef
Application of Artificial Neural Network for Compensation of Soft Tissue Artifacts in Inertial Sensor-Based Relative Position Estimation Ji Seok Choi, Jung Keun Lee Journal of the Korean Society for Precision Engineering.2022; 39(3): 233. CrossRef