Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Soonjae Hwang"

Article category

Keywords

Publication year

Authors

"Soonjae Hwang"

Articles
Optimal Design Technique for the Shape of Induction Heating Electric Range Coil Using Response Surface Method
Soonjae Hwang, Changyeon Lee, Seokmoo Hong
J. Korean Soc. Precis. Eng. 2024;41(5):407-413.
Published online May 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.023
Induction heating is a technology that uses heat generated by resistance when a high-frequency current is applied to a coil. An electric range using this is called an Induction Heating (IH) electric range. IH electric ranges are being widely applied in commercial products recently because they have higher thermal efficiency performances than other methods. The performance of a heating coil of an IH electric range greatly varies depending on the shape and number of coils. Thus, research on optimal coil shape and number according to product shape is required. Therefore, this study aimed to design an optimal heating coil at the set temperature of an electric range product. Target temperature was set to the temperature that a commercial stainless-steel container could withstand. The thickness of the coil copper wire, the number of windings, the applied voltage, and the frequency were set as design variables. A sensitivity analysis was performed to check the influence of each design variable on coil temperature. Based on this, optimal design was performed using the response surface method. Electromagnetic field-thermal analysis was performed with the designed coil and a very approximate result was obtained with a 0.07% error from the set target temperature.
  • 44 View
  • 2 Download
Study on PCM Cooling of Wireless Charger Using Electromagnetic Field-thermal-fluid-structure Coupled Analysis
Soonjae Hwang, Sarang Yi, Seakmoo Hong
J. Korean Soc. Precis. Eng. 2024;41(4):305-312.
Published online April 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.150
With the increasing use of portable devices, the safety and efficiency of wireless chargers have become significant concerns. Wireless chargers can cause battery damage, deformation, and failure of the charging module due to the high temperatures generated during the charging process. Thus, the importance of thermal management has been increasingly emphasized. In this study, we experimentally confirmed that cooling performance was improved by applying phase change material (PCM) to the heat-generating parts of the wireless charger. The cooling performance of the PCM was analyzed using Ansys Fluent, the component temperature was measured with an infrared camera, and 3D thermal deformation was measured with a DIC measurement device. Electromagnetic field, thermal, fluid, and structural coupled analyses were performed to investigate the impact of thermal deformation caused by wireless charging. The results showed that the temperature and deformation error was within 3% of the coupled analysis results, and the proposed electromagneticthermal-fluid-structural coupled analysis enabled more accurate simulation prediction of the physical coupling process inside the wireless charger.
  • 48 View
  • 0 Download