Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

4
results for

"Sound pressure"

Article category

Keywords

Publication year

Authors

"Sound pressure"

REGULAR

A Highway Secondary Accident Prevention System based on FFT Analysis of Vehicle Collision Sounds
Minki Jung, Young Shin Cho, Yongsik Ham, Joong Bae Kim
J. Korean Soc. Precis. Eng. 2025;42(9):749-756.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.037

This study introduces a highway secondary accident prevention system that employs Fast Fourier Transform (FFT) analysis of vehicle collision sounds. The system is designed to identify abnormal acoustic patterns produced during collisions and skidding events, enabling faster and more accurate accident detection than traditional methods. When a crash is detected, visual warning signals are instantly sent to nearby vehicles using LED devices powered by a photovoltaic panel and an energy storage system (ESS). Experimental results showed 100% detection accuracy during independent playback of collision, skidding, and driving sounds, and 80% accuracy during simultaneous playback. These results confirm the system's ability to effectively differentiate accident-related sounds and deliver timely alerts. This research offers an innovative and environmentally sustainable approach to enhancing highway safety and reducing the societal and economic consequences of secondary accidents.

  • 25 View
  • 0 Download
Articles
An Aeroacoustics Study on AAM Blade in Duct with Different Strut Shapes
Sang Hyun Kim, Jihun Song, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2023;40(9):751-758.
Published online September 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.060
Lately, due to the concentration of population in metropolitan areas, traffic congestion in the hub city has occurred, and future mobility AAM development is undergoing active progress to solve this situation. Accordingly, reducing noise pollution, which is pointed out as one of the problems of AAM, is an essential technical issue for urban operation. In this study, a duct, which is a representative aerodynamic noise reduction method, was used, and numerical analysis was performed using ANSYS FLUENT, a CFD software, according to the shape of struts in the duct. The FW-H of the transient-state LES model was used, and the steady-state analysis value was used as the initial value to save analysis time. Case 1 without strut, Case 2 with strut of an airfoil section, and Case 3 with strut of a rectangle section were designed and compared at a rotational speed of 6,000 RPM. Compared to Case 1, Case 2 and Case 3 showed improved thrust by about 7% and 2%, respectively. Compared to Case 2, Case 3 showed reduced OASPL from a minimum of 0.0793 dB to a maximum of 1.0072 dB. It was found that shapes of strut in the duct significantly affect thrust and aerodynamic noise.
  • 14 View
  • 0 Download
A Study on Aerodynamic Noise Reduction Depending on UAM Main Propeller Lay-out
Chang Ho Son, Jihun Song, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2023;40(9):741-750.
Published online September 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.059
Recently, as UAM has been in the spotlight worldwide, the issue of aerodynamic noise generated from propellers has emerged. Therefore, changes in thrust and aerodynamic noise were compared while changing the propeller lay-out distance. The designed propeller model was analyzed using ANSYS Fluent, a CFD software. Based on steady-state analysis, transient analysis was performed, and SPL was calculated using the FW-H noise model. Based on the standard propeller lay-out distance of 0.1 R (0.12 mm), 5 cases from 0.2 R to 0.6 R were compared with the reference model at equal intervals of 0.1 R. The thrust increased by up to 3.5% as the propeller distance increased. In most listeners positioned to measure SPL, noise was reduced by 0.07-0.7% in the improved model compared to the reference model due to reduction in local vorticity. However, because pressure fluctuation due to the increase in thrust and high SPL in the low-frequency region were measured, noise increased by 0.6% to 3.5% in some listeners. Increasing the propeller distance enhances thrust performance, but inevitably increases noise due to pressure fluctuations and SPL in the low-frequency region. Therefore, strict analysis of noise prediction according to a specific frequency and various design shapes are needed.
  • 18 View
  • 1 Download
Investigation on Acoustic Characteristics of Micro-Speaker Diaphragm according to Corrugation Depth Using Finite Element Analysis
Ho Jin Bae, Hyun Joong Lee, Seong Keol Kim, Keun Park
J. Korean Soc. Precis. Eng. 2017;34(8):569-574.
Published online August 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.8.569
Recent use of mobile phones as a multimedia device has increased the development of micro-speaker modules having high quality and a compact size. Micro-speakers use polymer diaphragms fabricated by the thermoforming process. To improve the sound quality, micro-speaker diaphragms are usually designed to contain a number of micro-corrugations. This study investigated the effects of the corrugation depth on the acoustic characteristics of the diaphragm, using finite element (FE) analysis. Structural FE analysis was performed to investigate the stiffness change according to the corrugation depth. Modal FE analysis was used to compare the change in natural frequencies for each case. Harmonic response analysis further investigated the resulting variation in acoustic power. The effects of the corrugation depth on the acoustic characteristics of the diaphragm were discussed by reviewing all the FE analysis results synthetically.

Citations

Citations to this article as recorded by  Crossref logo
  • Design and Analysis of a Novel Microspeaker with Enhanced Low-Frequency SPL and Size Reduction
    Ki-Hong Park, Zhi-Xiong Jiang, Sang-Moon Hwang
    Applied Sciences.2020; 10(24): 8902.     CrossRef
  • 25 View
  • 0 Download
  • Crossref