This paper shows results of research on transparent electrode manufacturing processes using thermal imprinting and IPL technique. By using an IPL process instead of the existing heat sintering process, the sheet resistance value was reduced to about 1/ 10. Additionally, sintering time could be reduced from 1 hour to 1 ms. As a result of measuring the transmittance to determine the excellence of the transparent electrode produced in this way, it was confirmed that it had a high transmittance of 94.4% compared to the substrate with a very high bending stability compared to the existing ITO transparent electrode. These results show that the transparent electrode manufacturing method proposed in this study is very useful.
Micro hot-embossing is a powerful tool in the agile additive manufacturing industry. Its applications include optical components, micro-fluidic devices, MEMS, hydrophobic/hydrophilic surfaces, and energy harvesting devices. To overcome a drawback of low-process speed, the R2R process has been innovated, with novel embossing mechanisms and process optimization. Also, new materials beyond thermoplastic polymers have been applied to develop new devices, or enhance device performance. This review surveys recent progress in micro hot-embossing technology, in terms of new mold fabrication process, process innovation, and various applications.
Citations
Citations to this article as recorded by
Manufacturing Process for Highly Stable Thermal Imprinting Transparent Electrode Using IPL Sintering Yunseok Jang Journal of the Korean Society for Precision Engineering.2025; 42(1): 75. CrossRef
Finding Ways to Deform Fine Patterns Fabricated by UV Curable Resin Woo Young Kim, Su Hyun Choi, Seonjun Kim, Young Tae Cho Journal of the Korean Society for Precision Engineering.2020; 37(4): 291. CrossRef