Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

6
results for

"Wan-Jin Chung"

Article category

Keywords

Publication year

Authors

"Wan-Jin Chung"

Articles
Analysis of Acoustic Emission (AE) Signal Characteristics of the Magnesium Alloy Sheet (AZ31B) in the Tensile Deformation
Yong Ho Song, So Chan An, Jae Hyeong Yu, Wan-Jin Chung, Chang-Whan Lee
J. Korean Soc. Precis. Eng. 2023;40(1):39-47.
Published online January 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.091
In this study, acoustic emission (AE) signals associated with the behavior of materials in the magnesium alloy (Mg AZ31B) tensile test were analyzed. The AE sensor was attached with the material to measure the AE signals. During the tensile experiment, the AE sensor measured the elastic waves generated inside the specimen. The AE parameters, such as, the signal energy, duration, and frequency centroid, were studied. We also analyzed the effect of the materials size and tensile speed on the AE signals. As a result, the lowest frequency centroid value occurred at the yield and fracture points. As the width and length of the specimen increased, the number of hit counts increased and the peak frequency occurred. Other AE parameters, such as, the duration and frequency centroid, were not affected. As the tensile speed increased, the hit decreased and the frequency centroid decreased in the elastic region. It was found that in the detection of the yield and fracture deformation, the number of counts, and frequency centroid were appropriate.
  • 40 View
  • 0 Download
Analysis of the Section Deflection in the Incremental Sheet Metal Forming Process of the Circular Cup Shape according to the Cup Geometry
Kyu-Seok Jung, Jae-Hyeong Yu, Wan-Jin Chung, Chang-Whan Lee
J. Korean Soc. Precis. Eng. 2020;37(9):675-683.
Published online September 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.019
Incremental sheet metal forming can be used to manufacture various products without the punch and die set. However, it is difficult to manufacture the desired shape due to section deflection and springback of the sheet. Section deflection is caused by the force of the blank holder for fixing the sheet and the tool for forming the sheet. In this study, we analyzed the characteristics of the section deflection according to the geometries of the circular cup shapes in the sheet incremental forming process. The section deflection increased with an increase in the entering radius and forming angle in the section deflection region. However, section deflection was constant according to the exit radius. In addition, the secondary forming process for reducing the shape error was introduced. The secondary incremental forming process was conducted in the opposite direction. Characteristics of the shape error according to the entering depth of the tool among the forming parameters for reducing the shape error of the cup shape were analyzed. The springback in the cup-shape was reduced by the additional forming process with an optimum entering depth of the tool.

Citations

Citations to this article as recorded by  Crossref logo
  • Study on the Incremental sheet metal forming process using a metal foam as a die
    Jae-Hyeong Yu, Kyu-Seok Jung, Mohanraj Murugesan, Wan-Jin Chung, Chang-Whan Lee
    International Journal of Material Forming.2022;[Epub]     CrossRef
  • Study on the Incremental Sheet Forming Process with the Ball Type Tool
    Jun-Hyun Kyeong, Byeong-Hyeop Lee, Sun-Jae Lee, Kyeong-Hoon Cho, Hyung-Won Youn, Chang-Whan Lee
    Journal of the Korean Society for Precision Engineering.2022; 39(5): 371.     CrossRef
  • Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error
    Kyu-Seok Jung, Jae-Hyeong Yu, Wan-Jin Chung, Chang-Whan Lee
    Materials.2020; 13(21): 4719.     CrossRef
  • 71 View
  • 0 Download
  • Crossref
Optimization Design of Penetrator Geometry Using Artificial Neural Network and Genetic Algorithm
Kyu-Seok Jung, Sung-Min Cho, Jae-Hyeong Yu, Yo-Han Yoo, Jong-Bong Kim, Wan-Jin Chung, Chang-Whan Lee
J. Korean Soc. Precis. Eng. 2020;37(6):429-436.
Published online June 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.031
When the penetrator collides with the target, the penetrator has different penetrating characteristics and residual velocity after penetration, according to the geometry of the penetrator. In this study, we optimized the geometry of the penetrator using the artificial neural network and the genetic algorithm to derive the best penetration performance. The Latin hypercube sampling method was used to collect the sample data, Simulation for predicting the behavior of the penetrator was conducted with the finite cavity pressure method to generate the training data for the artificial neural network. Also, the optimal hyper parameter was derived by using the Latin hypercube sampling method and the artificial neural network was used as the fitness function of the genetic algorithm to optimize the geometry of the penetrator. The optimized geometry presented the deepest penetration depth.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on 3D Printing Conditions Prediction Model of Bone Plates Using Machine Learning
    Song Yeon Lee, Yong Jeong Huh
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 291.     CrossRef
  • 60 View
  • 0 Download
  • Crossref
Research History and Recent Trends in the Development of Sheet Metal-Forming Processes
Jong-Bong Kim, Sung-Uk Lee, Dong-Yol Yang, Wan-Jin Chung
J. Korean Soc. Precis. Eng. 2016;33(4):247-255.
Published online April 1, 2016
Sheet metal-forming processes such as stamping, deep drawing, bending, shearing, hydroforming, hydromechanical deep drawing, rubber forming, and incremental forming have been widely used in the automotive, aircraft, and ship-building industries. With the expansion of the automotive industry, research on these processes has been remarkably developed in Korea since the 1980s. Here, we review the history of this research as well as recent trends in sheet metal-forming processes. This overview focuses specifically on the results of research in Korea and on the works of Professor D.Y. Yang, in honor of his retirement.
  • 16 View
  • 0 Download
Development of Fine Blanking Die with Fluid Chamber and its Application to Production of Circular Blanks in a Hydraulic Press
Jong-Ho Kim, Je-Goo Ryu, Chi-Soo Choi, Wan-Jin Chung
J. Korean Soc. Precis. Eng. 1996;13(5):157-163.
Published online May 1, 1996
  • 6 View
  • 0 Download
Theoretical and Experimental Study of the Axisymmetric Fluid Pressure-Driven Hydroforming Process
Dong-Yol Yang, Sun-Jun Choi, Wan-Jin Chung
J. Korean Soc. Precis. Eng. 1990;7(2):28-38.
Published online June 1, 1990
  • 18 View
  • 0 Download