Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

40
results for

"Wear"

Article category

Keywords

Publication year

Authors

Funded articles

"Wear"

Regular

Development of a Adjustable fastening Mechanism for Wearable Robots Utilizing the Poisson's Ratio Properties of Braided Sleeves
Yong-Sin Seo, Jae-Young Lee, Cheol Hoon Park, Sung-Hyuk Song
J. Korean Soc. Precis. Eng. 2026;43(2):151-157.
Published online February 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.092
This study introduces a novel adjustable fastening mechanism for wearable robots, aimed at alleviating user discomfort associated with traditional fixed attachment methods. By utilizing the unique scissoring effect of braided sleeves, we demonstrated that axial manipulation can effectively translate into radial size control, allowing for precise regulation of fastening force. To address the size limitations of commercial braided sleeves, we developed a large-area fastening structure by combining multiple braided sleeve sheets. Additionally, we incorporated a wire tendon system to enable active operation in both Daily Mode (fastening-release) and Exercise Mode (fastening-tightening). Experimental results on an anthropomorphic model revealed that this adjustable fastening structure offers variable fastening forces, achieving a 4.8-fold difference between the exercise and daily modes. This research presents a new approach by leveraging the Poisson's ratio properties of braided sleeves for dynamic fastening, tackling fabrication challenges for large-area structures, and improving user comfort and compliance in wearable robot applications
  • 245 View
  • 11 Download

REGULARs

Techniques for Tool Life Prediction and Autonomous Tool Change Using Real-time Process Monitoring Data
Seong Hun Ha, Min-Suk Park, Hoon-Hee Lee
J. Korean Soc. Precis. Eng. 2025;42(11):949-958.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.077

Materials such as titanium alloys, nickel alloys, and stainless steels are difficult to machine due to low thermal conductivity, work hardening, and built-up edge formation, which accelerate tool wear. Frequent tool changes are required, often relying on operator experience, leading to inefficient tool use. While modern machine tools include intelligent tool replacement systems, many legacy machines remain in service, creating a need for practical alternatives. This study proposes a method to autonomously determine tool replacement timing by monitoring machining process signals in real time, enabling automatic tool changes even on conventional machines. Tool wear is evaluated using current and vibration sensors, with the replacement threshold estimated from the maximum current observed in an initial user-defined interval. When real-time signals exceed this threshold, the system updates controller variables to trigger tool changes. Results show vibration data are more sensitive to wear, whereas current data provide greater stability. These findings indicate that a hybrid strategy combining both sensors can enhance accuracy and reliability of tool change decisions, improving machining efficiency for difficult-to-cut materials.

  • 81 View
  • 4 Download
Prototype Development of a Smart Personal Protective Respirator with a Color-signaling Triage System: Enhancing Disaster Response through Real-time Biometric Monitoring
Dasom Koo, Joonhwa Choi, JinKi Min, Huijae Park, Dohyung Kim, Seung Hwan Ko, Jooeun Ahn, Juyeon Park
J. Korean Soc. Precis. Eng. 2025;42(11):909-917.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.068

This study presents a self-wearable smart personal protective respirator featuring a color-signaling triage system designed to facilitate rapid assessment during large-scale physical disasters. The device enables individuals to wear the respirator, allowing responders to quickly identify critically ill patients through real-time biometric signal acquisition and intuitive LED-based visualization. Clinical triage criteria, developed with input from emergency medicine experts, informed a severity classification algorithm based on heart rate, respiratory rate, body temperature, and posture. To implement this system, an ergonomic head-type respirator prototype was created, integrated with a compact sensor module that includes a photoplethysmography (PPG) sensor, a barometric pressure and temperature sensor, and a combined accelerometer and gyroscope sensor. Additionally, custom sensors were developed: a respiration sensor utilizing nickel oxide nanoparticles patterned by laser, and an ECG sensor made by spraying silver nanoparticles onto a flexible polyimide film and then laser-patterning it into a serpentine shape. The system effectively detects vital signs and visualizes severity levels using color signals. Although field deployment was not part of this study, the prototype demonstrated potential to reduce triage time and enhance disaster response efficiency. Further validation in real-world settings is recommended.

  • 109 View
  • 6 Download
Articles
Micro Hole Machining Characteristics of Glassy Carbon Using Electrical Discharge Machining (EDM)
Jae Yeon Kim, Ji Hyo Lee, Bo Hyun Kim
J. Korean Soc. Precis. Eng. 2025;42(4):325-332.
Published online April 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.006
Glassy carbon (GC) has superior properties such as high corrosion resistance, heat resistance, and low adhesion to glass materials in a glass molding process (GMP). In addition, the demand for GC molds is increasing in various industries that require high precision of glass parts. However, GC is a difficult-to-machine material with high hardness and brittleness. Electrical discharge machining (EDM) can machine GC regardless of its strength or hardness. In this study, tungsten carbide (WC-Co) electrode was fabricated by wire electrical discharge grinding (WEDG). Characteristics of EDM of micro holes on GC were then analyzed. As capacitance and voltage increased, material removal rate (MRR) increased while machining time tended to decrease. However, at low voltages, short circuit and secondary discharge occurred, which increased the electrode wear rate (EWR). As a result, a D-shaped electrode that could prevent short circuit and debris accumulation was fabricated and a micro hole array was machined.

Citations

Citations to this article as recorded by  Crossref logo
  • Experimental Study on the Formation of Discharge Crater Morphology in Micro EDM
    Jae Yeon Kim, Ui Seok Lee, Hee Jin Kong, Bo Hyun Kim
    Journal of the Korean Society for Precision Engineering.2026; 43(1): 61.     CrossRef
  • 67 View
  • 6 Download
  • Crossref
Development of a Regression-Based Tool Life Prediction Model in Manufacturing Environments
Hyun Chul Kim
J. Korean Soc. Precis. Eng. 2025;42(3):247-252.
Published online March 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.131
This study aimed to develop a regression-based model for predicting tool life in manufacturing environments, with goals of enhancing productivity and reducing costs. In machining operations, particularly roughing processes, high cutting forces can accelerate tool wear, often leading to process interruptions and increased defect rates. Previous research on tool life prediction has frequently relied on empirical models and statistical methods, which face limitations in reliability across diverse machining conditions. To address this issue, we proposed a data-driven approach that could collects tool wear data under varying machining conditions (such as cutting speed, feed rate, and depth of cut) and applied regression models to predict tool life effectively. The model’s performance was validated under multiple conditions to assess its predictive accuracy. This study offers a practical tool life management solution for manufacturing settings, optimizing tool usage and enhancing operational efficiency.
  • 69 View
  • 5 Download
This study investigated the effectiveness of tap water application in reducing nano-sized wear particles at a wheel-rail contact interface and its impact on air quality at different train velocities. Airborne wear particles (AWPs) were simulated using a twin-disk rig at 500, 800, and 1,300 RPM. Mass concentration of nano-sized wear particles was measured using a fast mobility particle sizer (FMPS) at a sampling frequency of 1 Hz. To simulate various vehicle dynamics and contact conditions, the slip rate was incrementally increased from 0 to 3%. During wet conditions, water was applied at a rate of 7 L/min. PM0.1 and PM0.56 under dry and wet conditions were compared to evaluate the method’s effectiveness. The analysis showed that the tap water application method improved the air quality by reducing PM0.56 by at least 74% and PM0.1 by approximately 80%. In conclusion, the water application method can effectively improve air quality by reducing generation of nano-sized wear particles. The train velocity affected the generation of nano-sized wear particles under both conditions.
  • 43 View
  • 0 Download
Fretting Wear Simulation of Press-fit Axles Using an Energy Based Wear Model
Dong Hyung Lee, Young-Sam Ham, Chan Woo Lee
J. Korean Soc. Precis. Eng. 2024;41(9):699-705.
Published online September 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.071
Railway axles are among critical components ensuring safe and efficient train operations. They are particularly susceptible to damage mechanisms such as fretting wear and fatigue. Fretting induced by high contact pressure and microslip between contact surface can significantly deteriorate fatigue strength at the contact edge of the press-fit section. Recent research has been conducted to enhance axle strength and reliability. However, fretting wear or microcrack formation at the wheel-press-fit zone of axles is still an active area of investigation. Accurately analyzing fretting wear is challenging due to its sensitivity to numerous factors such as changes in friction coefficient, influence of wear particles, and selection of an appropriate wear model. This paper aimed to establish a comprehensive analysis method for fretting wear in interference-fitted axles using finite element analysis (FEA) and numerical analysis techniques. Two wear models were applied in simulations: an Archard wear model and an energy-based wear model. Analysis results were compared with experimental data from rotating bending fatigue press-fit specimens. This comparison will help validate the proposed analysis method and assess the effectiveness and accuracy of different wear models in predicting fretting wear in press-fit axles.
  • 51 View
  • 2 Download
The effectiveness of applying tap water method to reduce the generation of nano-sized wear particles from wheel-rail contacts in the aspect of air quality was investigated. A twin-disk rig was utilized to simulate the generation of airborne wear particles resulting from wheel-rail contacts. Slip rates ranging from 0 to 3% were continuously generated to simulate various railway vehicle dynamics. Dry and tap water application conditions (7 L/min) were tested. The mass concentration of wear particles with sizes below 560 nm generated during tests was measured using a Fast Mobility Particle Sizer (FMPS). Particles measured in the slip zone (0 to 3%) were categorized into PM0.02, PM0.03, PM0.1, and PM0.56 for analysis. Results indicated a significant decrease in mass concentration of particles with sizes above 30 nm, while those with sizes below 30 nm showed an increase. Particle reduction rate was -217.2% for PM0.02, -58.5% for PM0.03, 84.5% for PM0.1, and 90.3% for PM0.56. It should be noted that a negative reduction rate indicates an increase in the amount of particle generation. This study demonstrates that the application of tap water is effective in improving air quality by reducing the generation of nano-sized wear particles overall.

Citations

Citations to this article as recorded by  Crossref logo
  • Measurement and Analysis of Air Quality Improvement Effects of Applying Water Methods at Various Train Velocities Using a Twin-disk Rig
    HyunWook Lee
    Journal of the Korean Society for Precision Engineering.2024; 41(10): 753.     CrossRef
  • 61 View
  • 1 Download
  • Crossref
Passive Mode Control of 2 DOF Wearable Upper-limb Rehabilitation Robot
UHyun Suh, SeongSig Choi, HoonMin Park, TaeSeok Kim, KeonYoung Oh, Hak Yi
J. Korean Soc. Precis. Eng. 2024;41(8):591-596.
Published online August 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.011
People with hemiplegia require ongoing rehabilitation exercises to regain function in their upper limbs. However, due to the increasing number of elderly and disabled people, the number of rehabilitation professionals is insufficient. As a solution to this problem, researchers have been exploring various upper limb rehabilitation exercise robots. Unfortunately, these robots are often large and heavy, making them cumbersome to wear and use. The proposed exoskeleton rehabilitation robot consists of two robotic modules: an elbow module (1 DOF) and a wrist module (1 DOF). In order to analyze the robot"s workspace, the kinematics were calculated using the D-H parameters. To generate the trajectories, five able-bodied individuals wore the robot and performed the hand-wash motion, resulting in a total of 10 trajectory data sets. The reference trajectories were then generated by polynomial regression based on the collected data. Lastly, a passive mode control was experimented with in the rehabilitation process, and the results demonstrated the promising effectiveness of the proposed robot.
  • 49 View
  • 3 Download
A Study on the Wear Phenomena of PLA and PETG Materials for 3D Printing in Non-lubricated Condition
Yonsang Cho, Hyunseop Lee
J. Korean Soc. Precis. Eng. 2024;41(2):145-151.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.119
With the recent development of 3D printing technology, various 3D printing materials have been developed and used. To utilize 3D-printed products with mechanical parts, studies on friction and wear characteristics according to relative motion between materials are required. However, tribology studies on 3D-printed materials are limited compared to those of the existing materials for mechanical parts. In this study, the frictional and wear characteristics are identified through a reciprocating wear test in non lubricated conditions between the Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PETG) printed in the Fused Deposition Modeling (FDM) method. In the wear test between the same materials, the friction coefficient and wear rate were higher in the PLA than in the PETG, and PLA was deposited on the block due to high frictional heat. In the wear test of the PLA block and PETG bump, the wear of the PLA block decreased compared to the wear test between the same materials, but the wear of the PETG bump tended to increase. Therefore, it seems that the 3D-printed PETG may be more advantageous in terms of friction and wear than 3D-printed PLA during relative movement in a non lubricating condition.

Citations

Citations to this article as recorded by  Crossref logo
  • Tribological Properties of Fused Deposition Modeling-Printed Polylactic Acid and PLA-CF: Extrusion Temperature and Internal Structure
    Paweł Zawadzki, Justyna Rybarczyk, Adam Patalas, Natalia Wierzbicka, Remigiusz Łabudzki, Băilă Diana, Fodchuk Igor, Bonilla Mirian
    Journal of Tribology.2026;[Epub]     CrossRef
  • Artificial Intelligence Technologies and Applications in Additive Manufacturing
    Selim Ahamed Shah, In Hwan Lee, Hochan Kim
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2463.     CrossRef
  • 105 View
  • 6 Download
  • Crossref
Verification of Walking Efficiency of Wearable Hip Assist Robot for Industrial Workers: A Preliminary Study
Yun Hee Chang, Jung Sun Kang, Bo Ra Jeong, Bok Man Lim, Byung June Choi, Youn Baek Lee
J. Korean Soc. Precis. Eng. 2024;41(1):37-46.
Published online January 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.094
In highly mobile workplaces, wearable walking assistant robots can reduce muscle fatigue in the lower extremities of workers and increase energy efficiency. In this study, walking efficiency according to the development of an ultralight wearable hip-assist robot for industrial workers was verified. Five healthy adult males participated in this study. Their muscle fatigue and energy consumption were compared with and without the robot while walking on a flat treadmill and stairs. When walking on the treadmill while wearing the robot, muscle fatigue in the rectus femoris and gastrocnemius decreased by 90.2% and 37.7%, respectively. Oxygen uptake and energy expenditure per minute also decreased by 8.9% and 13.1%, respectively. When climbing stairs while wearing the robot, fatigue of the tibialis anterior, semitendinosus, and gastrocnemius muscles decreased by 18.2%, 33.3%, and 63.6%, respectively. Oxygen uptake and energy expenditure per minute also decreased by 3.6% and 3.7%, respectively. Although wearing a hip-assist robot could reduce muscle fatigue and use metabolic energy more efficiently, it is necessary to further increase the energy efficiency while climbing stairs. This study is intended to provide basic data to improve the performance of robots.
  • 71 View
  • 2 Download
Study on of Friction and Degradation Characteristics of TPV Glass Run Channel
Su-Bin Cha, Junho Bae, Koo-Hyun Chung
J. Korean Soc. Precis. Eng. 2023;40(11):891-897.
Published online November 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.078
Recently, the demand for electric vehicles is intensively increasing in accordance with environmental issues in automotive industries. Given that noise level from the electric vehicles is significantly lower than that from conventional vehicles with internal combustion engine, noise management has become more critical. Conventionally, glass run channel (GRC) is used to block the noise and contaminants from outside of vehicle. In this work, the friction and degradation characteristics of GRC with thermoplastic vulcanizate substrate were assessed. The tests were performed using the reciprocating tribo-tester developed to replicate the contact sliding between GRC and window glass. Also, the test conditions were determined in consideration of operating condition of GRC. As a result, the plastic deformation of the lips due to creep and wear of the slip coating deposited on the lip surface were found to be major degradation mechanisms. Furthermore, it was shown that the friction and degradation increased significantly due to the misalignment between GRC and window glass, associated with the significant increase in the reaction force. The results of this work provide fundamental understanding of the degradation characteristics of GRC, and therefore are expected to be useful for the design of GRC with improved performance.
  • 36 View
  • 0 Download
Heat Reduction Characteristics of Wear Ring with Umbrella-type Micro-dimple
Young Chan Yoon, Taek Sung Lee
J. Korean Soc. Precis. Eng. 2023;40(8):607-615.
Published online August 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.040
For the hydraulic cylinder system of construction equipment to function normally, the hydraulic oil should not leak under high pressure, and the leakage begins with various seals of damage. The frictional heat caused by the reciprocating motion inside the cylinder increases the temperature of the oil, which affects the aging of the seal materials inside the cylinder, thereby accelerating seal damage. The purpose of this study is to confirm the effect of reducing heat generation by applying umbrellatype micro-dimples on the surface of a wear ring, and to find out the performance according to changes in shape and density of the dimples. Dimples were manufactured by injection molding and the core for injection was made by profile grinding processing. The structural safety of the wearing with dimples was examined by structural analysis, and the temperature changes of the dimple were measured during pin-on-disc friction experiments. It was confirmed that the dimple was effective in reducing the amount of heat generated, and the heat generation decreased as the size and density of the dimple increased.
  • 29 View
  • 0 Download
Study on Wear Behavior of 630 Stainless Steel Fabricated by Sequential Metal Additive Manufacturing (Powder Bed Fusion and Directed Energy Deposition)
Tae-Geon Kim, Gwang-Yong Shin, Ki-Yong Lee, Do-Sik Shim
J. Korean Soc. Precis. Eng. 2023;40(6):483-492.
Published online June 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.131
Hybrid additive manufacturing (AM) refers to a combination of two metal AM techniques: material deposition by powder bed fusion (PBF) and additional building by directed energy deposition (DED). This study focused on different characteristics in accordance with relative deposition directions of PBF and DED during hybrid AM production. Characteristics of the sample fabricated by hybrid AM (i.e., hybrid sample) were compared with those of the sample fabricated by PBF or DED. Ferrite was dominant in the microstructure of PBF deposits with very fine retained austenite observed locally. In contrast, lath martensite and retained austenite were formed uniformly in the microstructure of DED deposits. Different microstructures in the two processes were attributed to differences of cooling rate. In DED deposits, microhardness was significantly decreased owing to a high retained austenite fraction. However, in the hybrid sample, microhardness was rapidly increased in the HAZ owing to aging heat treatment for long-term deposition. Principal wear mechanisms of PBF and DED samples were oxidative wear and plastic deformation, respectively.
  • 56 View
  • 2 Download
Tool Wear Monitoring System based on Real-Time Cutting Coefficient Identification
Young Jae Choi, Ki Hyeong Song, Jae Hyeok Kim, and Gu Seon
J. Korean Soc. Precis. Eng. 2022;39(12):891-898.
Published online December 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.111
Among the monitoring technologies in the metal-cutting process, tool wear is the most critical monitoring factor in real machining sites. Extensive studies have been conducted to monitor equipment breakdown in real-time. For example, tool wear prediction studies using cutting force signals and deducting force coefficient values from the cutting process. However, due to many limitations, those wearable monitoring technologies have not been directly adopted in the field. This paper proposes a novel tool wear predictor using the cutting force coefficient with various cutting tools, and its validity evaluates through cutting tests. Tool wear prediction from the cutting force coefficient should conduct in real-time for adoption in real machining sites. Therefore, a real-time calculation algorithm of the cutting force coefficient and a tool wear estimation method proposes, and they compare with actual tool wear in cutting experiments for validation. Validation cutting tests are conducted with carbon steel and titanium, the most commonly used materials in real cutting sites. In future work, validation will be conducted with different materials and cutting tools, considering the application in real machining sites.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review of Intelligent Machining Process in CNC Machine Tool Systems
    Joo Sung Yoon, Il-ha Park, Dong Yoon Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243.     CrossRef
  • 65 View
  • 0 Download
  • Crossref