Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS
REGULAR

Multi-Criteria Decision Making Using Preferential Selection Index in Titanium based Die-Sinking PMEDM

Journal of the Korean Society for Precision Engineering 2019;36(9):793-802.
Published online: September 1, 2019

1 Faculty of Mechanical Engineering, Hanoi University of Industry Vietnam

2 School of Mechanical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road Vietnam

3 Hungyen University of Technology and Education Vietnam

4 Department of Mechatronics Engineering, SRM Institute of Science and Technology, Kattankulathur India

#E-mail: nguyenhuuphan@haui.edu.vn, TEL: +84-913122605
• Received: February 13, 2019   • Revised: March 28, 2019   • Accepted: May 23, 2019

Copyright © The Korean Society for Precision Engineering

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 35 Views
  • 0 Download
  • 19 Crossref
  • 26 Scopus
prev next

Citations

Citations to this article as recorded by  Crossref logo
  • Performance analysis of powder-assisted micro-drilling operation using micro-EDM
    Sharad Yadav, Naman Sisodia, Deepak Agarwal, Rabesh Kumar Singh, Anuj Kumar Sharma
    Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.2024; 238(15): 7627.     CrossRef
  • Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study
    Sabrina Haoues, Mohamed Athmane Yallese, Salim Belhadi, Salim Chihaoui, Alper Uysal
    The International Journal of Advanced Manufacturing Technology.2023; 124(7-8): 2401.     CrossRef
  • Study and Optimization Defect Layer in Powder Mixed Electrical Discharge Machining of Titanium Alloy
    Dragan Rodic, Marin Gostimirovic, Milenko Sekulic, Borislav Savkovic, Andjelko Aleksic
    Processes.2023; 11(4): 1289.     CrossRef
  • The use of sintered silver-hydroxyapatite powder added electrodes in electrical discharge machining of Ti-6Al-4 V
    Damla Özdemir, Bülent Ekmekci
    Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture.2023; 237(6-7): 985.     CrossRef
  • A Comparative Study on Multi-Criteria Decision-Making in Dressing Process for Internal Grinding
    Huu-Quang Nguyen, Xuan-Hung Le, Thanh-Tu Nguyen, Quoc-Hoang Tran, Ngoc-Pi Vu
    Machines.2022; 10(5): 303.     CrossRef
  • Impact of SiC Particle Incorporated Dielectric Medium on Machining Performance of AA7050/SiC/Al2O3 Hybrid Composites
    S. Syath Abuthakeer, Y. Aboobucker Parvez, J. Nashreen
    ECS Journal of Solid State Science and Technology.2022; 11(8): 083005.     CrossRef
  • A study on multi-criteria decision-making in powder mixed electric discharge machining cylindrical shaped parts
    Tran Huu Danh, Trieu Quy Huy, Pham Duc Lam, Nguyen Manh Cuong, Hoang Xuan Tu, Vu Ngoc Pi
    EUREKA: Physics and Engineering.2022; (5): 123.     CrossRef
  • Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy
    Ghazi Alsoruji, T. Muthuramalingam, Essam B. Moustafa, Ammar Elsheikh
    Journal of Materials Research and Technology.2022; 18: 720.     CrossRef
  • Multi-Criteria Decision Making in the PMEDM Process by Using MARCOS, TOPSIS, and MAIRCA Methods
    Huu-Quang Nguyen, Van-Tung Nguyen, Dang-Phong Phan, Quoc-Hoang Tran, Ngoc-Pi Vu
    Applied Sciences.2022; 12(8): 3720.     CrossRef
  • Multi-criteria decision making in electrical discharge machining with nickel coated aluminium electrode for titanium alloy using preferential selection index
    Nguyen Huu Phan, Ngo Ngoc Vu, Shailesh Shirguppikar, Nguyen Trong Ly, Nguyen Chi Tam, Bui Tien Tai, Le Thi Phuong Thanh
    Manufacturing Review.2022; 9: 13.     CrossRef
  • Influence of Coated Electrode in Nanopowder Mixed EDM of Al–Zn–Mg–Si3N4 Composite
    G. Anbuchezhiyan, R. Saravanan, R. Pugazhenthi, Kumaran Palani, Vamsi Krishna Mamidi, R. Thanigaivelan
    Advances in Materials Science and Engineering.2022; 2022: 1.     CrossRef
  • Evaluation of machining performance and multi criteria optimization of novel metal-Nimonic 80A using EDM
    Vikas K. Shukla, Rakesh Kumar, Bipin Kumar Singh
    SN Applied Sciences.2021;[Epub]     CrossRef
  • Multi Criteria Decision Making of Vibration Assisted EDM Process Parameters on Machining Silicon Steel Using Taguchi-DEAR Methodology
    Nguyen Huu Phan, T. Muthuramalingam
    Silicon.2021; 13(6): 1879.     CrossRef
  • Combination of Taguchi method, MOORA and COPRAS techniques in multi-objective optimization of surface grinding process
    Nhu-Tung Nguyen, Do Trung
    Journal of Applied Engineering Science.2021; 19(2): 390.     CrossRef
  • MEASUREMENT OF MICROCHANNELS PRODUCED IN AA6351/RUTILE COMPOSITE BY WIRE-EDM
    P. SREERAJ, S. THIRUMALAI KUMARAN, S. SURESH KUMAR, M. UTHAYAKUMAR, M. PETHURAJ
    Surface Review and Letters.2021; 28(01): 2050034.     CrossRef
  • Multi-Response Optimization and Surface Integrity Characteristics of Wire Electric Discharge Machining α-Phase Ti-6242 Alloy
    Prasanna R, Kavimani V, Gopal P.M, Simson D
    Process Integration and Optimization for Sustainability.2021; 5(4): 815.     CrossRef
  • Influence of Electrical Discharge Machining on Thermal Barrier Coating in a Two-Step Drilling of Nickel-Based Superalloy
    Changshui Gao, Zhuang Liu, Tianhai Xie, Chao Guo
    Arabian Journal for Science and Engineering.2021; 46(3): 2009.     CrossRef
  • Machining Characteristics of Al2O3 Powder Mixed Electric Discharge Machining of AA7050/SiCp/Al2O3p Hybrid Composites
    Y. Aboobucker Parvez, S. Syath Abuthakeer
    ECS Journal of Solid State Science and Technology.2021; 10(7): 073007.     CrossRef
  • Multi-objective optimization in titanium powder mixed electrical discharge machining process parameters for die steels
    Phan-Nguyen Huu
    Alexandria Engineering Journal.2020; 59(6): 4063.     CrossRef

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Multi-Criteria Decision Making Using Preferential Selection Index in Titanium based Die-Sinking PMEDM
J. Korean Soc. Precis. Eng.. 2019;36(9):793-802.   Published online September 1, 2019
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Multi-Criteria Decision Making Using Preferential Selection Index in Titanium based Die-Sinking PMEDM
J. Korean Soc. Precis. Eng.. 2019;36(9):793-802.   Published online September 1, 2019
Close

Figure

  • 0
  • 1
  • 2
  • 3
Multi-Criteria Decision Making Using Preferential Selection Index in Titanium based Die-Sinking PMEDM
Image Image Image Image
Fig. 1 Powder mixed electrical discharge machine
Fig. 2 Compare to PSI, TOPSIS, MOORA and GRA results with graph
Fig. 3 Main effects plot for S/N of θj
Fig. 4 Interaction plot for S/N of θj
Multi-Criteria Decision Making Using Preferential Selection Index in Titanium based Die-Sinking PMEDM

Input parameters and its levels26

No Factors Level
1 2 3
1 WM SKD61 SKD11 SKT4
2 TM Cu Cua Gr
3 TP - + -a
4 ton 5 10 20
5 Ip 8 4 6
6 toff 38 57 85
7 PC 0 10 20
8 Interaction of WM and TM - - -
9 Interaction of WM and PC - - -
10 Interaction of TM and PC - - -

a-Dummy treated

Experimental results26

Exp. No WM TM TP ton Ip toff PC MRR
(mm3/min)
SR
(μm)
1 1 1 1 1 1 1 1 10.487 3.35
2 1 1 2 2 2 2 2 8.169 3.21
3 1 1 3 3 3 3 3 3.152 2.56
4 1 2 2 2 3 3 1 10.239 3.55
5 1 2 3 3 1 1 2 14.304 3.61
6 1 2 1 1 2 2 3 0.089 1.45
7 1 3 3 3 2 2 1 37.466 4.78
8 1 3 1 1 3 3 2 23.575 3.24
9 1 3 2 2 1 1 3 38.843 4.35
10 2 1 2 3 2 3 1 18.882 4.16
11 2 1 3 1 3 1 2 3.857 2.05
12 2 1 1 2 1 2 3 14.496 3.20
13 2 2 3 1 1 2 1 10.608 3.35
14 2 2 1 2 2 3 2 0.320 2.04
15 2 2 2 3 3 1 3 23.577 4.57
16 2 3 1 2 3 1 1 23.885 4.57
17 2 3 2 3 1 2 2 59.669 4.45
18 2 3 3 1 2 3 3 17.159 2.74
19 3 1 3 2 3 2 1 1.252 2.55
20 3 1 1 3 1 3 2 20.745 4.31
21 3 1 2 1 2 1 3 4.374 2.46
22 3 2 1 3 2 1 1 0.198 2.26
23 3 2 2 1 3 2 2 6.782 2.89
24 3 2 3 2 1 3 3 19.682 3.50
25 3 3 2 1 1 3 1 10.649 3.23
26 3 3 3 2 2 1 2 25.970 3.24
27 3 3 1 3 3 2 3 54.360 5.65

a-Dummy treated

The standardized results from the trials

Exp. No WM TM TP ton Ip toff PC x'ij (MRR) x'ij (SR)
1 1 1 1 1 1 1 1 0.1758 0.4328
2 1 1 2 2 2 2 2 0.1369 0.4517
3 1 1 3 3 3 3 3 0.0528 0.5664
4 1 2 2 2 3 3 1 0.1716 0.4085
5 1 2 3 3 1 1 2 0.2397 0.4017
6 1 2 1 1 2 2 3 0.0015 1.0000
7 1 3 3 3 2 2 1 0.6279 0.3033
8 1 3 1 1 3 3 2 0.3951 0.4475
9 1 3 2 2 1 1 3 0.6510 0.3333
10 2 1 2 3 2 3 1 0.3164 0.3486
11 2 1 3 1 3 1 2 0.0646 0.7073
12 2 1 1 2 1 2 3 0.2429 0.4531
13 2 2 3 1 1 2 1 0.1778 0.4328
14 2 2 1 2 2 3 2 0.0054 0.7108
15 2 2 2 3 3 1 3 0.3951 0.3173
16 2 3 1 2 3 1 1 0.4003 0.3173
17 2 3 2 3 1 2 2 1.0000 0.3258
18 2 3 3 1 2 3 3 0.2876 0.5292
19 3 1 3 2 3 2 1 0.0210 0.5686
20 3 1 1 3 1 3 2 0.3477 0.3364
21 3 1 2 1 2 1 3 0.0733 0.5894
22 3 2 1 3 2 1 1 0.0033 0.6416
23 3 2 2 1 3 2 2 0.1137 0.5017
24 3 2 3 2 1 3 3 0.3299 0.4143
25 3 3 2 1 1 3 1 0.1785 0.4489
26 3 3 3 2 2 1 2 0.4352 0.4475
27 3 3 1 3 3 2 3 0.9110 0.2566

a-Dummy treated

The value of conversion parameters

Exp. No N ϕMRR ϕSR ϕ j Ωj W j
1 0.304 -0.129 0.129 0.033 0.967 0.039
2 0.294 -0.157 0.157 0.050 0.950 0.039
3 0.310 -0.257 0.257 0.132 0.868 0.035
4 0.290 -0.118 0.118 0.028 0.972 0.040
5 0.321 -0.081 0.081 0.013 0.987 0.040
6 0.501 -0.499 0.499 0.499 0.501 0.020
7 0.466 0.162 -0.162 0.053 0.947 0.039
8 0.421 -0.026 0.026 0.001 0.999 0.041
9 0.492 0.159 -0.159 0.050 0.950 0.039
10 0.333 -0.016 0.016 0.001 0.999 0.041
11 0.386 -0.321 0.321 0.207 0.793 0.032
12 0.348 -0.105 0.105 0.022 0.978 0.040
13 0.305 -0.128 0.128 0.033 0.967 0.039
14 0.358 -0.353 0.353 0.249 0.751 0.031
15 0.356 0.039 -0.039 0.003 0.997 0.041
16 0.359 0.042 -0.042 0.003 0.997 0.041
17 0.663 0.337 -0.337 0.227 0.773 0.031
18 0.408 -0.121 0.121 0.029 0.971 0.040
19 0.295 -0.274 0.274 0.150 0.850 0.035
20 0.342 0.006 -0.006 0.000 1.000 0.041
21 0.331 -0.258 0.258 0.133 0.867 0.035
22 0.322 -0.319 0.319 0.204 0.796 0.032
23 0.308 -0.194 0.194 0.075 0.925 0.038
24 0.372 -0.042 0.042 0.004 0.996 0.041
25 0.314 -0.135 0.135 0.037 0.963 0.039
26 0.441 -0.006 0.006 0.000 1.000 0.041
27 0.584 0.327 -0.327 0.214 0.786 0.032

Priority index and ranking

Exp.
No
PSI GRA TOPSIS MOORA
θ j Ranking S/N η j Ranking S/N C* Ranking S/N yi Ranking S/N
1 0.024 18 -32.406 0.304 13 -10.32 0.256 21 -11.84 0.027 22 -31.45
2 0.023 22 -32.846 0.312 9 -10.11 0.242 25 -12.32 0.046 13 -26.80
3 0.022 24 -33.192 0.327 6 -9.69 0.249 24 -12.06 0.059 7 -24.56
4 0.023 21 -32.779 0.311 11 -10.13 0.241 27 -12.34 0.017 24 -35.41
5 0.026 14 -31.773 0.296 19 -10.57 0.285 15 -10.90 0.067 4 -23.47
6 0.020 26 -33.783 0.333 5 -9.54 0.299 14 -10.50 0.057 9 -24.85
7 0.036 5 -28.890 0.287 20 -10.82 0.557 4 -5.08 0.013 26 -37.86
8 0.034 6 -29.300 0.256 25 -11.83 0.423 6 -7.47 0.067 5 -23.54
9 0.038 2 -28.388 0.263 24 -11.60 0.592 3 -4.55 0.043 15 -27.30
10 0.027 13 -31.349 0.299 18 -10.47 0.322 12 -9.85 0.013 27 -38.02
11 0.025 15 -32.058 0.314 8 -10.06 0.283 16 -10.97 0.070 2 -23.05
12 0.028 12 -31.142 0.283 21 -10.94 0.308 13 -10.23 0.070 3 -23.14
13 0.024 17 -32.373 0.304 14 -10.34 0.257 20 -11.80 0.032 20 -29.77
14 0.022 23 -33.186 0.340 3 -9.37 0.268 17 -11.43 0.059 8 -24.60
15 0.029 10 -30.773 0.304 12 -10.32 0.374 8 -8.53 0.043 14 -27.28
16 0.029 9 -30.714 0.304 15 -10.34 0.379 7 -8.43 0.013 25 -37.41
17 0.042 1 -27.590 0.242 27 -12.31 0.768 1 -2.29 0.076 1 -22.44
18 0.032 7 -29.816 0.263 23 -11.58 0.362 9 -8.83 0.050 10 -26.08
19 0.020 27 -33.801 0.341 2 -9.33 0.242 26 -12.33 0.047 11 -26.55
20 0.028 11 -31.099 0.300 17 -10.45 0.343 11 -9.31 0.042 16 -27.61
21 0.023 19 -32.616 0.317 7 -9.96 0.262 19 -11.64 0.041 17 -27.80
22 0.021 25 -33.590 0.344 1 -9.25 0.255 22 -11.85 0.029 21 -30.76
23 0.023 20 -32.698 0.312 10 -10.11 0.251 23 -12.01 0.038 18 -28.42
24 0.030 8 -30.399 0.274 22 -11.23 0.360 10 -8.88 0.038 19 -28.52
25 0.025 16 -32.174 0.300 16 -10.44 0.264 18 -11.56 0.024 23 -32.58
26 0.036 4 -28.885 0.250 26 -12.03 0.456 5 -6.82 0.066 6 -23.65
27 0.037 3 -28.548 0.338 4 -9.41 0.677 2 -3.39 0.046 12 -26.73

a-Dummy treated

ANOVA of S/N ratio for θj

Source DOF SS V F Ranking
WM (A) 2 1.5663 0.78315 1.42 5
TM (B) 1 52.5182 52.5182 135.25 1
TP (C) 1 0.1185 0.1185 0.31 7
ton (D) 2 6.0347 3.01735 7.77 3
Ip (E) 2 3.7653 1.88265 4.85 4
toff (F) 2 0.2681 0.13405 0.35 6
PC (G) 2 6.0718 3.0359 10.09 2
A × B 2 2.8771 1.43855 3.70 -
A × G 4 8.0968 2.0242 5.21 -
B × G 2 2.4723 1.23615 3.18 -
Error 6 2.3299 0.388317 - -
Total 26 86.1189 - - -

Confirmation of experiemental results of PSI method

Machining characteristics Optimal parameters Optimal value % Difference
Cal. value Exp. value
MRR (mm3 / min) SKD11, Gr, +, ton = 5 μs,
Ip = 8 A, toff = 57 μm, 10 g/l
55.281 59.669 7.82
SR (μs) 4.21 4.45 5.7
Table 1 Input parameters and its levels26

a-Dummy treated

Table 2 Experimental results26

a-Dummy treated

Table 3 The standardized results from the trials

a-Dummy treated

Table 4 The value of conversion parameters
Table 5 Priority index and ranking

a-Dummy treated

Table 6 ANOVA of S/N ratio for θj
Table 7 Confirmation of experiemental results of PSI method