Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

6
results for

"고분자 전해질막 연료전지"

Article category

Keywords

Publication year

Authors

Funded articles

"고분자 전해질막 연료전지"

Specials

Development of Transformer-based Model for Prediction of PEMFC Remaining Useful Life
Da Hye Geum, Hyeon Do Han, Hyunjun Yang, Heejun Shin, Suk Won Cha, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):981-986.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00015
A Transformer model to predict the remaining useful life of a fuel cell, which has demonstrated superior performance in analyzing time series data. The dataset was created from long-term performance evaluation experiments conducted in rated power mode, with measurements taken every 10 hours. We preprocessed the raw data using a moving average, allocating 70% for training and 30% for evaluation. The model's performance, evaluated through MAE, MSE, and MAPE, was excellent. The fuel cell's critical voltage, defined as 94.5% of its initial voltage, was measured at 0.719 V. During the experimental run, the actual critical time was 106.6 hours, while the model predicted 106.8 hours, resulting in a 0.19% error. Since the predictions were based on data collected up to 93 hours, the estimated remaining life was 13.8 hours.
  • 349 View
  • 21 Download
Parametric Studies of Ionomer Content in PEMFC MEA with Different Humidity
Byung Gyu Kang, Hyeon Min Lee, Ye Rim Kwon, Sun Ki Kwon, Ki Won Hong, Seoung Jai Bai, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):975-980.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00006
The ionomer content in the catalyst layer is a crucial design factor that affects the performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the optimal ionomer content can vary based on the surrounding humidity levels. This study systematically evaluated the influence of the ionomer-to-carbon (I/C) ratio (0.00, 0.55, and 0.91) on PEMFC performance under fully humidified (RH 100%) and low-humidity (RH 25%) conditions. Membrane-electrode assemblies (MEAs) were fabricated using a spray coating technique, and their electrochemical properties were analyzed through polarization curves and electrochemical impedance spectroscopy (EIS). Under RH 100%, the MEA with an I/C ratio of 0.55 achieved the highest peak power density of 519.8 mW/cm2, indicating a successful balance between proton conductivity and gas transport. Conversely, under RH 25%, the best performance of 203.9 mW/cm2 was observed at an I/C ratio of 0.91. This shift is attributed to improved water retention at higher ionomer content, which reduced membrane dehydration and lowered both ohmic and Faradaic resistances. These findings highlight the dual role of the ionomer in facilitating proton transport and managing water balance, emphasizing the necessity of optimizing the I/C ratio according to operating conditions for stable and high-performing PEMFC operation.
  • 636 View
  • 38 Download

REGULAR

Electrochemical Impedance Analyses of ePTFE-reinforced Polymer Electrolyte Membrane-based PEMFC with Varying Thickness and Relative Humidity
Gyutae Park, Subin Jeong, Youngjae Cho, Junseo Youn, Jiwon Baek, Jooyoung Lim, Dongjin Kim, Taehyun Park
J. Korean Soc. Precis. Eng. 2025;42(11):901-907.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.052

The polymer electrolyte membrane fuel cell (PEMFC) generates electrical energy through electrochemical reactions and is a key technology for sustainable energy. The electrolyte membrane significantly affects performance under varying conditions. This study examines the impact of membrane thickness and relative humidity (RH) on PEMFC performance using j-V curves and electrochemical impedance spectroscopy (EIS). Experiments were conducted with membrane thicknesses of 30, 15, and 5 μm under RH conditions of 100%-100% and 100%-0%. Under RH 100%-100%, performance improved as the membrane thickness decreased, with values of 954, 1050, and 1235 mW/cm² for the 30, 15, and 5 μm membranes, respectively. The 5 μm membrane demonstrated a 23% performance improvement over the 30 μm membrane. Under RH 100%-0%, performances were 422, 642, and 852 mW/cm², with degradation rates of 55.8%, 39.0%, and 32.1%. The 5 μm membrane exhibited the lowest degradation rate, indicating superior performance under low humidity. These results suggest that thinner membranes generally enhance performance and maintain efficiency even in dry conditions.

  • 105 View
  • 5 Download
Articles
Micro-hole Array Ceria Functional Layer Embedded Membrane for Durable Polymer Electrolyte Membrane Fuel Cell
Changwook Seol, Segeun Jang, Sang Moon Kim
J. Korean Soc. Precis. Eng. 2024;41(7):533-539.
Published online July 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.041
For the commercialization of polymer electrolyte membrane fuel cells (PEMFCs), it is essential to achieve high performance while improving the durability of the membrane electrode assembly. In particular, the durability of PEMFCs can be improved by adding radical scavengers, such as CeO2 (ceria), to the membrane. Though it is desirable to insert the ceria at the interface between the membrane and electrode, where the generated radical attack initiates, this increases interfacial resistance and ionic resistance, thereby inducing a probable reduction in initial performance, compared to that of a conventional membrane. Here, we developed modified Nafion electrolyte membranes with a spatially located patterned ceria containing Nafion ionomer to improve durability while minimizing performance degradation. The fabrication process includes an etching process to pattern the electrolyte membrane, and the ceria nanoparticle layer is selectively deposited by spray coating onto the membrane. The synergetic effect of the structural modification of the electrolyte membranes and the introduction of the functional ceria layer exhibited improved chemical durability, while maintaining the initial performance of the PEMFC.
  • 46 View
  • 0 Download
Additional Ionomer-coated Layer for Self-humidifying Polymer Electrolyte Membrane Fuel Cells
Gyutae Park, Dongjin Kim, Junseo Youn, Junghyun Park, Hyoun-Myoung Oh, Taehyun Park
J. Korean Soc. Precis. Eng. 2023;40(12):997-1001.
Published online December 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.097
In this study, we aim to develop a self-humidifying polymer electrolyte membrane fuel cell (PEMFC) by depositing platinum (Pt) on a membrane using sputtering. After we coated it with a Nafion® ionomer solution. This is considered a solution that can prevent membrane degradation in low humidity conditions. By introducing this self-humidifying concept, we can expect improved performance compared to conventional PEMFCs. By managing the water content of Nafion®, we aim to improve both the stability and performance of the PEMFCs. This research contributes to the development of more efficient and reliable PEMFC systems, showing promise for advances in this field.
  • 33 View
  • 0 Download
Estimation of the Capacity of Hydrogen-Based Energy Storage Systems toward Relieving the Imbalance of Electrical Load Pattern of South Korea
Jaeyeon Kim, Hyeok Kim, Geon Hwi Kim, Dasol Kim, Hansol Ryu, Taehyun Park
J. Korean Soc. Precis. Eng. 2020;37(7):547-554.
Published online July 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.029
This study reports on the feasibility of applying polymer electrolyte membrane fuel cells (PEMFCs) system to an energy storage system (ESS). We modeled each constituting system to compute the overall efficiency of the ESS. As a result, it was verified that the power plants’ electric powering capability can be curtailed. The amount of reduction is equal to that of 2nd Gori Nuclear Power Plant currently under construction. We calculated that approximately 320.85 L/day · MW of hydrogen is produced on a national scale. Also, Seoul’s demand output power of PEMFC and the requisite area of sites to install the PEMFC system are approximately 236 MW and 59059 m² respectively. This study can contribute to preventing the upsurge of the entire electric powering installed capability. Based on the present technology level, this study diagnoses the use of hydrogen-based ESS which will be introduced in the upcoming hydrogen economy period. Considering the water electrolysis by polymer electrolyte membrane water electrolyzers are currently at the beginning of commercialization and the energy density per mass of hydrogen is exceedingly high, we anticipate that the future of hydrogen base ESS’ effectiveness will reach greater levels than the analysis of this study.

Citations

Citations to this article as recorded by  Crossref logo
  • Economic dispatch of microgrid generation-load-storage based on dynamic bi-level game of multiple stakeholders
    Mao Yang, Jinxin Wang, Xudong Cao, Dake Gu
    Energy.2024; 313: 133931.     CrossRef
  • Efficiency improvement of a fuel cell cogeneration plant linked with district heating: Construction of a water condensation latent heat recovery system and analysis of real operational data
    Li Yuan-Hu, Jinyoung Kim, Sangrae Lee, Gunhwi Kim, Haksoo Han
    Applied Thermal Engineering.2022; 201: 117754.     CrossRef
  • 107 View
  • 2 Download
  • Crossref