The Split Hopkinson Pressure Bar (SHPB) experiment is commonly employed to assess the dynamic mechanical properties of materials under high strain-rate conditions (10²-10⁴ s-¹) through the propagation of elastic stress waves via pressure bars. The precision and dependability of SHPB measurements are heavily influenced by the alignment of the specimen with the bars. Misalignment can lead to flexural vibrations, causing waveform distortion and undermining the assumption of one-dimensional stress waves. While previous research has explored the impact of misalignment on waveform characteristics, pinpointing the specific sources of distortion from measured signals remains a challenge. This study introduces a machine learning-based classification method that extracts features from distorted SHPB waveforms to identify the type of misalignment. Incident wave signals under various misalignment scenarios were simulated using the commercial finite element software LS-DYNA, and the extracted features were utilized to create a training dataset. Several machine learning models, including XGBoost, were trained and evaluated, with XGBoost yielding the highest accuracy and F1-score. The trained model was then applied to experimentally measured distorted waveforms to validate its effectiveness. This proposed approach facilitates the automated diagnosis of distortion sources in SHPB data, reducing the need for manual interpretation and improving analysis efficiency.
This study analyzed acoustic emission (AE) signals generated during ultrasonic machining of SiC cathodes and evaluated classification performances of various machine learning models. AE data were collected in both waveform and hit formats, enabling signal characterization through statistical analysis and frequency domain examination. Various machine learning models, including XGBoost, KNN, Logistic Regression, SVM, and MLP, were applied to classify machining states. Results showed that XGBoost achieved the highest classification accuracy across all sensor positions, particularly at the upper part of the worktable with an accuracy of 98.35%. Additional experiments confirmed the consistency of these findings, highlighting the influence of sensor placement on classification performance. This study demonstrates the feasibility of monitoring AE-based machining state using machine learning and emphasizes the importance of sensor placement and signal analysis in improving classification accuracy. Future research should incorporate defect data and deep learning approaches to further enhance classification performance and process monitoring capabilities.
Citations
Citations to this article as recorded by
Flexible Acoustic Emission Sensor Signal Classification Using Convolutional Neural Networks for Pipeline Leak Detection Byungjae Park Journal of the Korean Society for Precision Engineering.2026; 43(1): 13. CrossRef
The collaboration of robots and humans sharing workspace, can increase productivity and reduce production costs. However, occupational accidents resulting in injuries can increase, by removing the physical safety around the robot, and allowing the human to enter the workspace of the robot. In preventing occupational accidents, studies on recognizing humans, by installing various sensors around the robot and responding to humans, have been proposed. Using the LiDAR (Light Detection and Ranging) sensor, a wider range can be measured simultaneously, which has advantages in that the LiDAR sensor is less impacted by the brightness of light, and so on. This paper proposes a simple and fast method to recognize humans, and estimate the path of humans using a single stationary 360° LiDAR sensor. The moving object is extracted from background using the occupied grid map method, from the data measured by the sensor. From the extracted data, a human recognition model is created using CNN machine learning method, and the hyper-parameters of the model are set, using a grid search method to increase accuracy. The path of recognized human is estimated and tracked by the extended Kalman filter.