Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"메탄"

Article category

Keywords

Publication year

Authors

Funded articles

"메탄"

Special

Techno-economic Analysis and Life Cycle Assessment of Carbon-neutral Fuel Production Using Dry Reforming and Fischer-Tropsch Process
Dongwook Oh, Junseok Song, Sangwook Park
J. Korean Soc. Precis. Eng. 2025;42(12):1045-1056.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00012
Sustainable Aviation Fuel (SAF) is crucial for achieving carbon neutrality in the aviation sector. Among various production methods, Fischer–Tropsch (FT) synthesis using eco-friendly syngas has garnered significant attention. Two primary routes for producing syngas for FT synthesis—Dry Reforming of Methane (DRM) and Water Electrolysis combined with Reverse Water Gas Shift (WE&RWGS)—are actively being studied. As upstream processes, these routes are evaluated for their potential to provide low-carbon syngas for FT synthesis. However, comprehensive comparisons between these two pathways are limited, despite their importance for future technology planning and decision-making. In this study, we conduct a comparative evaluation of DRM- and WE&RWGS-based SAF production systems using virtual process design, along with life cycle assessment (LCA) and techno-economic analysis (TEA), to assess their environmental and economic viability as future technologies. LCA results indicate that the DRM-based route has more than four times lower environmental impact compared to the WE&RWGS-based system. The majority of the environmental burden arises from feedstock supply (CH4 and CO2) and energy inputs. TEA results suggest that while the base case scenario demonstrates limited economic feasibility, future scenarios that incorporate economies of scale and policy incentives show promise for long-term economic viability.
  • 198 View
  • 14 Download
Article
Co-Sputtered Pt-Ru Catalytic Functional Layer for Direct-Methane Fueled Low Temperature Solid Oxide Fuel Cells
Hyong June Kim, Byung Chan Yang, Jaehyeong Lee, Sung Eun Jo, Geonwoo Park, Sanghoon Ji, Jihwan An
J. Korean Soc. Precis. Eng. 2022;39(2):91-95.
Published online February 1, 2022
DOI: https://doi.org/10.7736/JKSPE.021.119
Solid oxide fuel cell is a next generation energy conversion device that can efficiently convert the chemical energy of fuel into electrical energy. Fuel flexibility is one of the advantages of SOFCs over other types of fuel cells. SOFCs can operate with hydrocarbon type fuel. While nickel based composite is commonly used in direct methane fueled SOFC anode because of its great catalytic activity for methane reforming, the direct use of hydrocarbon fuels with pure Ni anode is usually insufficient for facile anode kinetics, and also deactivates the anode activity because of carbon deposition upon prolonged operation. In this report, the Ni based anodes with 20 nm thick catalytic functional layers, i.e., Pt, Ru, and Pt-Ru alloy, are fabricated by using the co-sputtering method to enhance the anode activity and power density of direct-methane SOFC operating at 500℃.

Citations

Citations to this article as recorded by  Crossref logo
  • A doped cobaltite for enhanced SOFCs fed with dry biogas
    Sebastian Vecino-Mantilla, Massimiliano Lo Faro
    Electrochimica Acta.2023; 464: 142927.     CrossRef
  • 67 View
  • 0 Download
  • Crossref