CNN is one of the deep learning technologies useful for image-based pattern recognition and classification. For machining processes, this technique can be used to predict machining parameters and surface roughness. In electrical discharge machining (EDM), the machined surface is covered with many craters, the shape of which depends on the workpiece material and pulse parameters. In this study, CNN was applied to predict EDM parameters including capacitor, workpiece material, and surface roughness. After machining three metals (brass, stainless steel, and cemented carbide) with different discharge energies, images of machined surfaces were collected using a scanning electron microscope (SEM) and a digital microscope. Surface roughness of each surface was then measured. The CNN model was used to predict machining parameters and surface roughness.
High aspect ratio-arrayed micro structures are used in various fields such as semiconductor packaging, biochip, nano composite material and superhydrophobic surface. Micro electric discharge machining (MEDM) has an advantage, in that hard material can be easily removed regardless of mechanical properties of the material. Reverse micro electric discharge machining (REDM) can process various shapes and arrayed features. In this study, REDM was used for fabrication of a micro tool of eccentric shape, and was assisted with vibration to improve machining efficiency. The bored plate made of brass, was prepared as a tool for REDM. Because of the shape of the tool, concentration of debris occurs and increases machining time. The effect of vibration-assisted MEDM on emission of debris and machining time was described for the range of 2 - 6 μm amplitudes and of 100 - 900 Hz frequencies. As a result, vibration applied on machining reduces approximately 55% of machining time.
Citations
Citations to this article as recorded by
Micro Hole Machining Characteristics of Glassy Carbon Using Electrical Discharge Machining (EDM) Jae Yeon Kim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2025; 42(4): 325. CrossRef
Study on Micro Grooving of Tungsten Carbide Using Disk Tool Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 123. CrossRef
Machining Characteristics of Micro EDM of Silicon Carbide Ju Hyeon Lee, Chan Young Yang, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 131. CrossRef
Micro Drilling of Single Crystal SiC Using Polycrystalline Diamond Tool Ui Seok Lee, Chan Young Yang, Ju Hyeon Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2021; 38(7): 471. CrossRef
Micro Pin Fabrication of Tungsten Carbide Using Polycrystalline Diamond Joo A Park, Ui Seok Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2020; 37(11): 791. CrossRef