Improving the interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is essential for enhancing the performance and durability of all-solid-state batteries (ASSBs). One promising method to achieve this is through surface coating with a chemically stable ion conductor, which helps suppress interfacial side reactions and improve long-term cycling stability. In this study, we deposited a uniform LiNbO3 (LNO) protective layer on NCA using particle atomic layer deposition (Particle ALD). This technique utilizes a self-limiting growth mechanism to ensure precise thickness control. We characterized the structural and chemical properties of the coated CAM with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), confirming the successful formation of a uniform LNO layer. Electrochemical evaluations revealed that LNO@NCA exhibited significantly improved capacity retention, maintaining 68.1% after 50 cycles at a 1C rate, compared to just 56.5% for the uncoated sample. This enhancement is attributed to the LNO layer's effectiveness in mitigating electrochemical side reactions. These findings demonstrate that Particle ALD-derived LNO coatings are an effective strategy for stabilizing CAM|SE interfaces and extending the cycle life of high-energy ASSBs.
Smart farms and smart factories utilize various environmental measurement and task recognition sensors. For situations requiring simultaneous measurements, a multi-sensor module that combines several sensors into one unit is advantageous. This study focuses on integrating various sensors into a single module and proposing an optimal usage method to minimize the power consumption of a wireless multi-sensor module capable of remote measurements. Analysis of the power consumption of individual sensor components revealed that when the measurement interval exceeds one minute, power consumption can be reduced by over 50.3% by turning off sensors during idle periods. If real-time responsiveness is not essential, the most efficient approach is to keep the entire module in sleep mode during these idle periods. A practical experiment was conducted using a multi-sensor module equipped with temperature and humidity, illuminance, CO2 concentration, and soil moisture sensors. When continuously powered, the module operated for 40 hours on a 3500 mAh Li-ion battery. However, by implementing sleep mode with a five-minute measurement interval, the operational duration extended to 562 hours.
Citations
Citations
Citations
Citations
Citations