This paper presents a line-of-sight (LOS) stabilization control method for portable optical systems by analyzing fast steering mirror, image sensor, and gyro sensor system. To compensate for LOS errors caused by hand tremors in portable optical systems, we present the configuration of an image sensor-based LOS stabilization control system and a control strategy considering the phase delay effect caused by low sampling frequency of the image sensor. The phase delay effect of the image sensor caused restricted bandwidth, which limited the stabilization performance. To overcome such limitations, we present disturbance feedforward control using the gyro sensor and controller design method considering characteristics of the gyro sensor. Through overall system modeling, we constructed a control simulation model. The LOS stabilization performance against hand tremor disturbances was analyzed based on the proposed controller design. Simulation results demonstrated that integrating a gyro sensor-based disturbance feedforward control with the image sensor-based LOS stabilization control significantly enhanced the stabilization performance.
The fast steering mirror is now being used in industries beyond precision processing, such as space and defense. The piezoelectric fast steering mirror (PFSM), which utilizes a piezoelectric actuator, is particularly suitable for these industries as they often require devices like electro-optic devices to withstand external vibrations and impacts. While the PFSM has inherent high stiffness, its complex structure makes it difficult to control. To address this, an accurate dynamic model is necessary. In this paper, we derived a dynamic model for the PFSM using a two-inertial system model that takes into account its structural characteristics. This dynamic model consists of both a mechanical system model and an electrical system model. We measured the frequency response function from electrical input to mechanical output and compared it with the derived frequency response model to verify its accuracy. The derived model can be used not only for control design, but also for instrument design and interpretation.
The objective of this study was to address the parameter estimation of the line-of-sight stabilization system on temperature variation, which is a significant element in regulating the control performance of mobile platform with visual targeting system. To this end, the LuGre friction model in this study was used both to represent the characteristic of the friction behavior and to design a control algorithm for the friction compensation. Results from both simulation and experimental tests helps to identify the friction parameters on LuGre friction model. Based on LuGre with parameter estimation, PI-LEAD control algorithm is designed to compensate nonlinear characteristic of the line-of-sight stabilization system on the variation of temperature. Finally, through simulation, the good control performance of line-of-sight stabilization system was evaluated according to the temperature variation.
Citations
Citations to this article as recorded by
Performance Analysis of Gimbal-Servo System Based on Temperature Variation Jaeheon Jeong Journal of the Korea Institute of Military Science and Technology.2025; 28(5): 545. CrossRef