Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"연성해석"

Article category

Keywords

Publication year

Authors

"연성해석"

Articles
Study on PCM Cooling of Wireless Charger Using Electromagnetic Field-thermal-fluid-structure Coupled Analysis
Soonjae Hwang, Sarang Yi, Seakmoo Hong
J. Korean Soc. Precis. Eng. 2024;41(4):305-312.
Published online April 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.150
With the increasing use of portable devices, the safety and efficiency of wireless chargers have become significant concerns. Wireless chargers can cause battery damage, deformation, and failure of the charging module due to the high temperatures generated during the charging process. Thus, the importance of thermal management has been increasingly emphasized. In this study, we experimentally confirmed that cooling performance was improved by applying phase change material (PCM) to the heat-generating parts of the wireless charger. The cooling performance of the PCM was analyzed using Ansys Fluent, the component temperature was measured with an infrared camera, and 3D thermal deformation was measured with a DIC measurement device. Electromagnetic field, thermal, fluid, and structural coupled analyses were performed to investigate the impact of thermal deformation caused by wireless charging. The results showed that the temperature and deformation error was within 3% of the coupled analysis results, and the proposed electromagneticthermal-fluid-structural coupled analysis enabled more accurate simulation prediction of the physical coupling process inside the wireless charger.
  • 48 View
  • 0 Download
Evaluation of Structural Integrity for Lifting-and-Lowering-Type Drone Station Using Fluid-Structure Interaction Analysis
Sang Ho Kim, Jae Youl Lee, Sung-Ho Hong, Jehun Hahm, Kap-Ho Seo, Jin-Ho Suh, Young Sik Joung, Se Hoon Jeung
J. Korean Soc. Precis. Eng. 2021;38(11):841-849.
Published online November 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.045
An elevating drone station is very useful when lifting and lowering the battery charging station for safe installation, maintenance, and energy efficiency of a drone operation. When drone station modules rise above the average roof level of neighboring structures they may receive a strong wind force; thus, understanding the physical phenomena of both the structures and fluid is important to understand the structure"s reaction to the wind force. However, most studies in the field of drone stations did not perform a structural safety evaluation under wind loadings. Therefore, in this paper, we carried out a fluid-structure interaction analysis to verify the design of the lifting-and-lowering-type drone station.
  • 38 View
  • 1 Download
A Study on the Weight Reduction Model of DACS System Valve with Pintle
Jun bok Ko, Young Soo Park, Seong Su Kim, So Dam Yi, Ki Bong Baek, Dong Sung Ha, Jae Su Kawk, Suhk hoon Suh
J. Korean Soc. Precis. Eng. 2019;36(8):729-736.
Published online August 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.8.729
A guided missile is a weapon system used in the interception of a ballistic missile using kinetic energy of a kill vehicle. The DACS (Divert and Attitude Control System) is a quick reaction propulsion system and subsystem of a kill vehicle that provides control over positions of a kill vehicle. The DACS allows for the interception of its target with greater accuracy and reliability. A Kill vehicle needs to move at high speed in a bid to intercept a ballistic missile after detecting a target. Thus, the weight reduction design of DACs system is required. The DACS operates under high temperature and pressure environment. In this study, one-way FSI (Fluid and Structure Interaction) analysis were conducted for various types of weight reduction valve model to validate its robustness. Through this process, we suggest an optimized weight reduction valve model
  • 43 View
  • 0 Download