Cryogenic machining uses liquid nitrogen (LN2) as a coolant. This machining process can reduce the cutting temperature and increase tool life. Titanium alloys have been widely used in the aerospace and automobile industries because of their high strength-to-weight ratio. However, they are difficult to machine because of their poor thermal properties, which reduce tool life. In this study, we applied cryogenic machining to titanium alloys. Orthogonal cutting experiments were performed at a low cutting speed (1.2 – 2.1 m/min) in three cooling conditions: dry, cryogenic, and cryogenic plus heat. Cutting force and friction coefficients were observed to evaluate the machining characteristics for each cooling condition. For the cryogenic condition, cutting force and friction coefficients increased, but decreased for the cryogenic plus heat condition.
Citations
Citations to this article as recorded by
Study on the Machinability of Cryogenic Milling for Compacted Graphite Iron Jisoo Kim, Do Young Kim Journal of the Korean Society for Precision Engineering.2022; 39(1): 13. CrossRef
Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation Dae-Gyoun Park, Tae-Ho Kim, Eon-Chan Jeon Journal of the Korean Society of Manufacturing Process Engineers.2018; 17(6): 68. CrossRef