This paper presents a method for estimating the fatigue life of crossed roller bearings (XRBs). XRBs feature a single row of rollers arranged alternately at right angles, making them ideal for applications that require high precision and a compact design. In rolling-element bearings, fatigue life is a crucial design parameter for ensuring long-term reliability and performance. However, existing fatigue life estimation models for XRBs in the literature are limited to basic rating life, with no models available for reference rating life. To address this gap, we developed a comprehensive fatigue life prediction model specifically for XRBs. We formulated a corresponding dynamic load rating to align with the values provided by bearing manufacturers and calibrated an unknown adjustment factor for XRBs using a commercial program. Additionally, a parametric study was conducted to investigate the impact of varying diametral clearance, external loads, roller dimensions, and roller profile parameters on the fatigue life of XRBs.
In this study, the effect of flow rate ratio (R) and total flow rate (Q) on the surface temperature of thermal barrier coatings (TBC) was investigated using a newly developed small-scale methane-oxygen burner rig. Subsequently, the failure mode of electron beam physical vapor deposition (EB-PVD) TBC was examined, and the relationship between surface temperature and coating life was established. The surface temperature of the TBC was found to be strongly dependent on both the flow rate ratio and the total flow rate. Specifically, surface temperature exhibited a proportional relationship with total flow rate, while it showed an inverse relationship with flow rate ratio. The failure mode of the EB-PVD TBC involved a gradual increase in delamination from the rim to the center of the coin-shaped specimen, and this failure mode was found to be independent of surface temperature. Additionally, it was determined that the surface temperature of EB-PVD TBC has a perfectly inverse linear relationship with coating life. This finding implies that the derived linear regression line from the burner rig test can be directly used to predict coating life for any untested surface .temperature.
Rolling bearing fatigue life is an essential criterion in industrial equipment design and manufacturing and requires precise maintenance and replacement predictions. ISO/TS 281:2007 and 16281:2008 are commonly used for angular contact ball bearing (ACBB) fatigue life calculations, but they do not account for the characteristics of individual bearing elements under combined loading conditions. This study proposes an enhanced formula for calculating fatigue life modification factors that considers individual element-specific contact loads and resulting film thickness variations. The proposed fatigue life formula provides longer life predictions than the conventional method of determining modification factors based solely on maximum contact loads. This difference is particularly noticeable in low-speed and/or heavy-loading applications. Analysis conducted using the proposed fatigue life formula on various factors affecting fatigue life revealed that fluid kinetic viscosity coefficients, temperature-associated density changes, and changes in radial loads and rotational speeds could significantly impact the fatigue life of ACBBs. The proposed fatigue life formula is expected to increase the accuracy of ACBB fatigue life predictions.
The main shaft of a mechanical press inevitably includes significant stress concentrations that can trigger severe mechanical damage and finally lead to failure under repetitive use. In this study, an efficient procedure to quantitatively evaluate the fatigue life of the shaft system including the main shaft and its support bearings, based on the macroscopic failure analysis of the main shaft broken during actual use, was investigated. For this purpose, the bearing support was modeled as an elastic foundation, and the elastic foundation stiffness value was varied to determine the optimal value that best simulates the failure behavior, especially with respect to the failure location and failure sequence, of an actual shaft. While the finite element mesh size was kept the same, only the effect of elastic foundation stiffness was investigated. The optimum value for the main shaft investigated in this study was approximately 60 N/mm³, and the fatigue life of the shaft was evaluated based on the conventional maximum principal stress theory. Based on this, two modified designs to enhance the fatigue life of the existing shaft are proposed.
This study aims to investigate the fatigue life of T-Type fillet welded joints for excavators subjected to bending loads, and also to verify the predicted fatigue life of the welded part using the effective notch stress method. Moreover, this study aims to determine an optimal toe angle of the T-Type fillet welded structure. In this context, the fatigue lives of T-Type fillet welded specimens (SM490A) were measured and the effective notch stress method for predicting the fatigue life of the T-Type fillet welded structure was verified by comparing with the FAT-225 curve of IIW (International Institute of Welding) as was suggested for the current types of welded structures. Considering simultaneously the scattering factor of the welded structure, the stress condition at the toe part higher than the root part, and the stress minimization condition of the toe part, the optimum toe angle at the T-Type fillet welding was identified at 30°. Likewise, the maximum stress (310.5 MPa) when the toe angle was 30° was about 14% less than the maximum stress (354.0 MPa) at 45°, and the fatigue life was improved by about 30%.
In general, it is noted that the time domain technique becomes difficult to predict with the use of the accurate fatigue life, due to the lack of dynamic information of the structure. When the multi-axial stress is generated by the random vibration excitation in the mechanical structure, the fatigue analysis should have performed in the frequency domain as based on the multi-axial PSDs due to the problems presented above. Notably, Premont proposed a method to calculate the equivalent stress using PSDs in the frequency domain. In calculating the equivalent stress PSD, the phase difference between the multi-axial stress components was not considered at that time. This study propose a frequency domain fatigue analysis technique which can calculate the equivalent stress from the multi-axial PSD, as it works considering the phase difference that can appear in the real vibration excited structure. To verify this method, the conventional time-domain method as similar to a multi-axial rainflow method, is compared with the proposed frequency domain method in a simple simulation model. The multi-axial PSD and finally the von Mises stress model is reviewed, according to whether the phase difference between the multi-axial stress components is considered or not is analyzed.
Citations
Citations to this article as recorded by
A method for editing multi-axis load spectrums based on S-transform dual-threshold theory Yongjie Lin, Zhishun Yang, Lingyun Yao Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.2025;[Epub] CrossRef
In this paper, a study on the effectiveness of micro-peening was accomplished for improvement of fatigue characteristics for reduction gear of manned and unmanned aircraft. The Almen saturation curve was obtained by various peening injection pressure supplied from a commercial air jet peening machine. The effective micro-peening process condition was adopted as five bar. The four points rotary bending fatigue test was conducted by using test specimen made of AISI alloy that was carburized based on AMS standard in this work. From the fatigue test result, the fracture life of specimen peened by nozzle pressure with five bar and six bar was higher than the un-peened specimen by approximately 323 percent and 146 percent respectively. However, the fracture life of specimen peened by the nozzle pressure with six bar was lower by approximately 221 percent than the peened specimen by five bar. For this reason, the peening nozzle pressure with five bar was decided as the optimum micro-peening condition. Effectiveness of micro-peening was validated and this micropeening technique will be used for real manned and unmanned aircraft gear parts or other durability mechanical parts.
Citations
Citations to this article as recorded by
A Review of Recent Advances in Design Optimization of Gearbox Zhen Qin, Yu-Ting Wu, Sung-Ki Lyu International Journal of Precision Engineering and Manufacturing.2018; 19(11): 1753. CrossRef