Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Cable chain"

Article category

Keywords

Publication year

Authors

"Cable chain"

Regular
Shape Optimization of Cable Chain to Minimize Assembly Stress and Maintained Retention Force under Tensile Loading
Min Je Kim, Min Seong Oh, Soon Jae Hwang, Do Hyoung Kim, Seok Moo Hong
J. Korean Soc. Precis. Eng. 2026;43(2):207-215.
Published online February 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.117
Cable chains are essential in the semiconductor industry for preventing the twisting or sagging of moving cables. They can be broadly categorized into two types based on their fastening methods, with rivet-based assembly being the most common. An alternative method utilizes integral locking features without rivets, which simplifies manufacturing and reduces production costs. However, integral cable chains are more susceptible to breakage during assembly, limiting their use in various industrial environments.This study introduces a structural design approach aimed at minimizing localized stress during assembly while ensuring the cable chain meets the required retention force. Design variables were selected from the modifiable features of the integral cable chain. Through sensitivity analysis, we identified key variables that significantly influence the retention force, which allowed us to reduce the number of design iterations. By employing finite element analysis and response surface methodology, we derived an optimal shape that achieved the target pull-out force and resulted in a 9.7% reduction in assembly stress compared to the original design.
  • 5 View
  • 1 Download