Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

5
results for

"Carbon nanotube"

Article category

Keywords

Publication year

Authors

Funded articles

"Carbon nanotube"

Regular

Fabrication and Evaluation of CNT Spray Coated Strain Sensor
Yoon Ji Yum, Ji Hyun Park, Sang Hoon Lee
J. Korean Soc. Precis. Eng. 2026;43(2):197-206.
Published online February 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.116
Carbon nanotubes (CNTs) are popular in strain sensors due to their exceptional electrical conductivity, flexibility, and sensitivity to deformation. In this study, a high-sensitivity strain sensor was fabricated by spray-coating CNT ink onto various paper substrates, with “lint-free paper” identified as the optimal choice. A total of 10 spray cycles ensured a reliable conductive coating. To enhance durability and broaden application potential, a PET protective layer was incorporated. The sensor's performance was assessed through bending tests using a push-pull gauge across a strain range of 0-2%. The lintfree paper-based sensor exhibited a consistent response up to 1.4% strain. The measured gauge factors (GF) were 121.370 in the 0-0.3% range, 70.999 in the 0.3-0.8% range, and 20.935 in the 0.8-1.4% range. A precise response was also noted when adjusting the bending angle in 1° increments, particularly within the 0-20° range. Additionally, the sensor was tested on the human wrist, confirming its viability for wearable applications. These findings indicate that the lint-free paper-based CNT strain sensor offers high sensitivity and measurement precision within narrow strain ranges. Its lightweight structure and flexible design suggest strong potential for practical use in areas such as sports monitoring and human motion detection.
  • 151 View
  • 3 Download

SPECIAL

Performance Study of Dielectric Elastomer Actuators with Varying Thickness of Carbon Nanotube Electrodes and Pre-stretch Ratios
Mingyu Kang, Joong-Hyun Park, Jong-An Choi, Jingu Jeong, Soonjae Pyo
J. Korean Soc. Precis. Eng. 2025;42(10):817-823.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.D.25.00004

This study examines how two key design parameters—the pre-stretch ratio and the thickness of the carbon nanotube (CNT) electrode—affect the actuation performance of dielectric elastomer actuators (DEAs). DEA samples are created with varying pre-stretch levels (50% and 125%) and different amounts of CNT spray coating (4 and 8 mg), and their threshold voltages and areal strains are quantitatively assessed. The experimental results indicate that higher pre-stretch ratios result in lower threshold voltages and greater areal deformations, while increased CNT thickness typically reduces actuator deformation due to enhanced mechanical stiffness. The combination of a high pre-stretch ratio and low CNT loading demonstrates improved electro-mechanical responsiveness at moderate voltages. These findings underscore the interconnected effects of structural and electrode design on DEA performance, offering practical design guidelines for optimizing soft actuator systems. This research lays a solid foundation for future applications of DEAs in haptic interfaces, wearable actuators, and soft robotics.

  • 81 View
  • 7 Download
Articles
Evaluation of Thin-Shell Properties of Self-Healing Microcapsules by Reinforcement of Carbon Nanotubes
Jeong Keun Jang, Hyeon Ji Kim, Sung Ho Yoon
J. Korean Soc. Precis. Eng. 2023;40(1):71-77.
Published online January 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.089
In this study, thin-shell surface observation, storage capability test, and micro-compressive test were performed for self-healing microcapsules using a field emission scanning electron microscope (FE-SEM) and a micro-compressive testing machine. A microcapsule having a melamine-urea-formaldehyde thin-shell and a microcapsule having a melamine-urea-formaldehyde thin-shell reinforced with carbon nanotubes were used. Two carbon nanotube contents were considered: 0.17 wt% and 0.50 wt%. Thin-wall shell state was relatively smooth when microcapsules were not reinforced with carbon nanotubes. It was uneven when microcapsules were reinforced with carbon nanotubes. Prepared microcapsules showed little decreases of weights even when the exposure time was increased regardless of whether they were reinforced with carbon nanotubes. Thus, their storage capability was good. When carbon nanotube content was the same, the fracture load was almost constant without being affected by the diameter of the microcapsule. However, fracture displacement increased with increasing diameter of the microcapsule. When diameters of microcapsules were similar, fracture load and fracture displacement increased when carbon nanotube content increased. It was found that self-healing microcapsules had good storage capability and mechanical properties. Thus, they could be applied to repair damage to composite materials if thin-shell formation mechanism for adding carbon nanotubes is supplemented.

Citations

Citations to this article as recorded by  Crossref logo
  • Analysis of mechanical properties and stress distribution in self-healing microcapsules using micro-compressive test, nanoindentation test, and finite element analysis
    Hyeon Ji Kim, Sung Ho Yoon
    Functional Composites and Structures.2024; 6(4): 045001.     CrossRef
  • A simplified predictive model for the compression behavior of self-healing microcapsules using an empirical coefficient
    Jaeho Cha, Sungho Yoon
    Functional Composites and Structures.2024; 6(3): 035010.     CrossRef
  • 67 View
  • 1 Download
  • Crossref
Analysis of Rapid Heating Performance in Multi-Layered Injection Mold System for CNT Surface Heating Element Application
Hyeon Min Lee, Young Bae Ko, Woo Chun Choi
J. Korean Soc. Precis. Eng. 2022;39(7):461-467.
Published online July 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.057
As a heating method for RHCM (Rapid Heating Cycle Molding) various heating technologies such as high frequency induction heating, IR heating, gas heating, and high temperature steamare applied, but these methods are not satisfying high productivity due to low energy efficiency. Research has been actively conducted on RHCM based on planar heating elements with high heating efficiency, such as carbon nanotubes, which are applied. To apply the CNT web film to the RHCM, a heating element must be applied inside the injection mold and power must be applied. As electricity is directly applied to the CNT web film to generate heat, all mold parts in contact with the CNT web film must be insulated, and high heat transfer is required for rapid heating performance. Thus, in this study, a multi-layer structure mold module for insulation and high heat transfer was designed to enable rapid heating by applying a CNT web film as a heat source. To this end, we intend to present a research direction for the commercialization of rapid heating molds, by identifying the main variables of rapid heating through heating experiments by the mold metal and insulator materials, and reflecting them in the mold design.
  • 35 View
  • 0 Download
A Study on Conformal Heating of Curved Mold Using CNT Film Heater
Seo-Hyeon Oh, Eun-Ji Jeon, Hyeon-Min Lee, Yeong-Bae Ko, Keun Park
J. Korean Soc. Precis. Eng. 2022;39(7):469-475.
Published online July 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.056
Injection molding is one of most widely-used polymer processing technologies in which hot polymer fills a mold cavity, and is solidified during the subsequent cooling process. In the mold filling stage, the mold temperature should be high to improve flow characteristics, and low to reduce cooling time during the cooling stage. To fulfill these objectives, rapid mold heating technology has been developed to raise mold temperature, without significant increase in cycle time. While the conventional rapid heating technologies required dedicated facilities such as steam heating or high-frequency induction heating system and has a limitation in uniform heating, the purpose of this study was to develop a facile and conformal mold heating unit that uses a carbon nanotube (CNT) film heater. The CNT film heater was used to heat a curved mold with high temperature uniformity, by maintaining uniform distance from the mold surface. The developed conformal heating technology was then applied to a singly curved mold and a multiply curved mold. Considering that the resulting temperature uniformity is superior to the conventional oil heating, the conformal mold heating technology using the CNT film heater can be used to improve part quality and productivity in various molding processes.
  • 38 View
  • 0 Download