In this study, a module combining various types of sensors was developed to increase search efficiency inside collapsed buildings. It was designed to be less than 70 mm in diameter so that it can be put into narrow spaces, and is equipped with a small & high-performance processor to process multiple sensor data. To increase sensor data processing efficiency, multi thread based software was configured, and the images were combined and transmitted to ensure time synchronization of multi-channel video data. A human detection function based on sound source detection using two microphones was implemented. The developed multi-sensor module was tested for operation by mounting it on a snake-type robot in a test bed simulating a disaster site. It was confirmed that the visible range of the robot to which the multi-sensor module was applied was expanded, and the ability to detect human and low-light human detect was secured.
In this study, we proposed microphone array and algorithm for sound source localization based on GCC-PHAT for the robot searching victims in a narrow space. Through frequency domain analysis, we designed filter to make algorithm react only to the sound with a human voice frequency. Additionally, calibration algorithm was integrated to solve the problem of the update cycle of result value becoming very short when passing through the filter, presenting difficulty in checking the value. Results obtained through experiments verified the performance of the proposed microphone array and sound source localization algorithm.
Citations
Citations to this article as recorded by
A Study on the Survivor Detection Module and Least-Squares Sound Source Localization Algorithm for Victim Search in Narrow Spaces Yun-Jeong Seok, Sung-Jae Kim, Seo-Yeon Park, Jin-Ho Suh Journal of Korea Robotics Society.2025; 20(1): 120. CrossRef
Multi-sensor Module Design and Operation of Snake Robot for Narrow Space Exploration Dong-Gwan Shin, Meungsuk Lee, Murim Kim, Sung-Jae Kim, Jin-Ho Suh Journal of the Korean Society for Precision Engineering.2024; 41(8): 633. CrossRef
This paper proposes an integrated control system for multi-disaster response robots based on Robot Operating System (ROS). The contributions of this paper were as follows: 1) A multi-score-based system concept was proposed in consideration of network instability issues which might frequently occur in compound disaster environments; 2) A detailed ROS based software structure was implemented to apply the proposed system to real robots; 3) Hardware cockpit and graphical user interface (GUI) for an operator were implemented; 4) through the experiment, the problem of the system based on common ROS structure, the out-of-control state, was confirmed and we verified the proposed system using the scenario.
With increasing demand for disaster response robots, many governments projects have been launched to ensure safety for citizens. This paper reviews government policies and research trends on disaster response robots. To give a bird"s eye view on disaster response robots, we first reviewed foreign technologies. We then introduced recent technologies developed in Korea and some ongoing researches on disaster response robots.
Citations
Citations to this article as recorded by
Role-taking and robotic form: an exploratory study of social connection in human-robot interaction Jenny L Davis, Robert Armstrong, Anne Groggel, Sharni Doolan, Jake Sheedy, Tony P. Love, Damith Herath International Journal of Human-Computer Studies.2023; 178: 103094. CrossRef
Development of a Realistic Simulator for Driving Education of a Disaster-Responding Special Purpose Machinery Hyo-Gon Kim, Jung-Woo Park, Hyo-Jun Lee, Sung-Ho Park, Young-Ho Choi, Byeong-Kyu Lee, Jin-Ho Suh Journal of Power System Engineering.2021; 25(2): 86. CrossRef
An Integrated Control System for Disaster Response Robot based on Multiple ROS Core considering Network Instability Kyon-Mo Yang, Jin-Ho Suh, Ji-Won Lee, Jinhong Noh, Min-Gyu Kim, Kap-Ho Seo Journal of the Korean Society for Precision Engineering.2021; 38(10): 741. CrossRef