This study presents a vertically deployable rotor-sail structure utilizing multi-layer Sarrus linkages. The structure fully extends during sailing to maximize Magnus lift and compresses to less than half its length for docking. An analytical beam model integrates link thickness, mid part spacing, and centrifugal loading to predict deflection and mass. Parametric comparisons of two-layer, six-layer, and twelve-layer configurations reveal that the twelve-layer design reduces structural mass by 90% while meeting an L/1000 deflection limit. Dynamic simulations using RecurDyn confirm that mid part segmentation decreases damping time and reduces peak stress, thus enhancing deployability and mechanical reliability. The findings offer quantitative design guidance for high-speed rotating deployable structures.