This study details the development of an ultra-precision air-bearing stage that integrates real-time motion error measurement and compensation features. The motion errors addressed include horizontal and vertical straightness errors, as well as roll, pitch, and yaw errors. These errors are measured by an embedded system that incorporates five capacitive sensors and a reference mirror within the stage. A key advantage of this stage is its capability to perform real-time compensation using the internal measurement system and on-stage pneumatic regulators, eliminating the need for external measurement and compensation devices. Experimental results show a significant reduction in motion errors, with horizontal and vertical straightness errors decreasing from 3.09 and 1.95 μm to 0.29 and 0.25 μm, respectively. Additionally, roll, pitch, and yaw errors were reduced from 3.18, 3.45, and 4.93 arcsec to 0.35, 0.41, and 0.49 arcsec, respectively. These results clearly demonstrate the effectiveness of the proposed approach.
This study introduces a straightforward and cost-effective method to enhance the positional accuracy of a 6-axis serial robot using a double ball-bar (DBB). Kinematic errors, a primary source of inaccuracies in offline programming, are estimated and calibrated through circular tests. The kinematics of the robot are modeled using the Denavit-Hartenberg (D-H) convention, and a mathematical relationship between radial deviation and kinematic errors is established. To avoid singularities, identifiable parameters are selected using singular value decomposition. The method involves three steps: measuring the tool center point (TCP) with the DBB, estimating key kinematic parameters, and verifying the calibration results. Redundant or less significant parameters are excluded to concentrate on the most impactful ones. During the process, the robot is commanded to trace a circular path while radial deviations are recorded. This data is then utilized to estimate and adjust the kinematic model. After recalculating and executing the circular path with the calibrated model, a notable reduction in deviation is achieved. This proposed approach requires no additional equipment and provides a quick, affordable solution for improving the accuracy of industrial robots while lowering maintenance costs.