Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Lithium-ion battery"

Article category

Keywords

Publication year

Authors

Funded articles

"Lithium-ion battery"

Special

A Review of in Operando Measurements of Local Temperature for Lithium-ion Batteries
Soyoung Park, Woosung Park
J. Korean Soc. Precis. Eng. 2025;42(12):1021-1035.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00024
Sensing the internal temperature of lithium-ion batteries is particularly useful for reliable battery operation as both electrochemistry and mass transport are dictated by local temperature. In this article, we review in operando techniques to monitor the internal temperature of lithium-ion batteries during charging and discharging. We categorize existing techniques into two groups: invasive and non-invasive approaches. Invasive techniques include optical fibers, thermocouples, and resistance temperature detectors as a thermometer. Non-invasive methods cover the temperature estimation techniques, namely electrochemical impedance spectroscopy as well as X-ray thermometry. For both approaches, we review working principle of thermometry, pros and cons of each thermometry, and recent studies to tackle relevant technical challenges. This review provides useful information for internal temperature measurements, offering chances for thermally reliable battery operation.
  • 169 View
  • 10 Download
Articles
A Study on the Selection of Failure Factors for Transient State Lithium-Ion Batteries based on Electrochemical Impedance Spectroscopy
Miyoung Lee, Seungyun Han, Jinhyeong Park, Jonghoon Kim
J. Korean Soc. Precis. Eng. 2021;38(10):749-756.
Published online October 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.040
Lithium-ion batteries are one of the main parts of electrical devices and are widely used in various applications. To safely use lithium-ion batteries, fault diagnosis and prognosis are significant. This paper analyzes resistance parameters from electrochemical impedance spectroscopy (EIS) to detect the fault of lithium-ion batteries. The internal fault mechanisms of batteries are so complex; it is difficult to detect abnormalities by direct current-based methods. However, by using alternating-current-based impedance by EIS, the internal degradation processes of the batteries can be detected. Impedance variation from EIS is verified under accelerated degradation test conditions and normal cycling test conditions. The results showed a significant relationship between fault and increase in resistance.

Citations

Citations to this article as recorded by  Crossref logo
  • Research into the Detection of Faulty Cells in Battery Systems Using BMS Cell Balancing Counts
    Hyunjun Kim, Woongchul Choi
    Transaction of the Korean Society of Automotive Engineers.2025; 33(8): 637.     CrossRef
  • PEDOT:PSS‐Based Prolonged Long‐Term Decay Synaptic OECT with Proton‐Permeable Material, Nafion
    Ye Ji Lee, Yong Hyun Kim, Eun Kwang Lee
    Macromolecular Rapid Communications.2024;[Epub]     CrossRef
  • Lithium-Ion Batteries (LIBs) Immersed in Fire Prevention Material for Fire Safety and Heat Management
    Junho Bae, Yunseok Choi, Youngsik Kim
    Energies.2024; 17(10): 2418.     CrossRef
  • 92 View
  • 9 Download
  • Crossref
The Effect of Thickness of Electrodes on Edge Quality in Laser Cutting of Electrodes
Dongkyu Park, Dongkyoung Lee
J. Korean Soc. Precis. Eng. 2021;38(2):97-101.
Published online February 1, 2021
DOI: https://doi.org/10.7736/JKSPE.020.095
Many countries are trying to overcome global warming due to greenhouse gas emissions, such as CO₂. In particular, the regulation on CO₂ emissions of internal combustion engine vehicles has become strictly important. Thus, the automobile companies are putting more effort for improving the manufacturing of the battery, which is the main power supply of electrical vehicles. In the electrode cutting process, laser cutting has been actively discussed to solve problems originating from the conventional electrode cutting processes. However, there is a lack of research considering the effect of thickness of the active material on laser cutting. In this paper, the effect of thickness of the active material on laser cutting of electrodes is analyzed. First, the cut electrodes are observed through a scanning electron microscope (SEM). Next, the kerf width and clearance width of the electrodes are measured and compared at the same laser parameter. The kerf width and clearance width of relatively thick electrodes are narrowly formed. Finally, the cutting quality of the electrode is compared. A uniform cut edge is observed as the scanning speed increases.

Citations

Citations to this article as recorded by  Crossref logo
  • Comparison of laser processability for LiFePO4 cathode material with nanosecond and femtosecond laser
    Jaegeun Shin, Juhee Yang, Dongkyoung Lee
    Journal of Science: Advanced Materials and Devices.2024; 9(3): 100753.     CrossRef
  • 67 View
  • 0 Download
  • Crossref