Sensing the internal temperature of lithium-ion batteries is particularly useful for reliable battery operation as both electrochemistry and mass transport are dictated by local temperature. In this article, we review in operando techniques to monitor the internal temperature of lithium-ion batteries during charging and discharging. We categorize existing techniques into two groups: invasive and non-invasive approaches. Invasive techniques include optical fibers, thermocouples, and resistance temperature detectors as a thermometer. Non-invasive methods cover the temperature estimation techniques, namely electrochemical impedance spectroscopy as well as X-ray thermometry. For both approaches, we review working principle of thermometry, pros and cons of each thermometry, and recent studies to tackle relevant technical challenges. This review provides useful information for internal temperature measurements, offering chances for thermally reliable battery operation.
Lithium-ion batteries are one of the main parts of electrical devices and are widely used in various applications. To safely use lithium-ion batteries, fault diagnosis and prognosis are significant. This paper analyzes resistance parameters from electrochemical impedance spectroscopy (EIS) to detect the fault of lithium-ion batteries. The internal fault mechanisms of batteries are so complex; it is difficult to detect abnormalities by direct current-based methods. However, by using alternating-current-based impedance by EIS, the internal degradation processes of the batteries can be detected. Impedance variation from EIS is verified under accelerated degradation test conditions and normal cycling test conditions. The results showed a significant relationship between fault and increase in resistance.
Citations
Citations to this article as recorded by
Research into the Detection of Faulty Cells in Battery Systems Using BMS Cell Balancing Counts Hyunjun Kim, Woongchul Choi Transaction of the Korean Society of Automotive Engineers.2025; 33(8): 637. CrossRef
PEDOT:PSS‐Based Prolonged Long‐Term Decay Synaptic OECT with Proton‐Permeable Material, Nafion Ye Ji Lee, Yong Hyun Kim, Eun Kwang Lee Macromolecular Rapid Communications.2024;[Epub] CrossRef
Lithium-Ion Batteries (LIBs) Immersed in Fire Prevention Material for Fire Safety and Heat Management Junho Bae, Yunseok Choi, Youngsik Kim Energies.2024; 17(10): 2418. CrossRef
Many countries are trying to overcome global warming due to greenhouse gas emissions, such as CO₂. In particular, the regulation on CO₂ emissions of internal combustion engine vehicles has become strictly important. Thus, the automobile companies are putting more effort for improving the manufacturing of the battery, which is the main power supply of electrical vehicles. In the electrode cutting process, laser cutting has been actively discussed to solve problems originating from the conventional electrode cutting processes. However, there is a lack of research considering the effect of thickness of the active material on laser cutting. In this paper, the effect of thickness of the active material on laser cutting of electrodes is analyzed. First, the cut electrodes are observed through a scanning electron microscope (SEM). Next, the kerf width and clearance width of the electrodes are measured and compared at the same laser parameter. The kerf width and clearance width of relatively thick electrodes are narrowly formed. Finally, the cutting quality of the electrode is compared. A uniform cut edge is observed as the scanning speed increases.
Citations
Citations to this article as recorded by
Comparison of laser processability for LiFePO4 cathode material with nanosecond and femtosecond laser Jaegeun Shin, Juhee Yang, Dongkyoung Lee Journal of Science: Advanced Materials and Devices.2024; 9(3): 100753. CrossRef