Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

4
results for

"No-Cheol Park"

Article category

Keywords

Publication year

Authors

Funded articles

"No-Cheol Park"

Regular

Model-based Hysteresis and Cross-coupling Compensation for Precision Control of Piezoelectric Fast Steering Mirror
Hyo Geon Lee, Jae Woo Jung, Sang Won Jung, Jae Hyun Kim, Seonbin Lim, Youngjin Park, Jaehyun Lim, Kijun Seong, Daehee Lee, Seunggu Kang, No-Cheol Park, Jun Young Yoon
J. Korean Soc. Precis. Eng. 2026;43(2):139-149.
Published online February 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.091
This paper presents model-based hysteresis and cross-coupling compensators designed for precise control of a piezoelectric fast steering mirror (FSM). The hysteresis compensators are developed by inversely modeling the variation in the force constant relative to various excitation voltages, enabling the system to maintain linear response characteristics across a broad range of input amplitudes. The cross-coupling compensator is formulated by creating a decoupling matrix that cancels out coupling effects, generating signals of equal magnitude and opposite phase for each axis. The implementation of these compensators reduces the hysteresis band and magnitude uncertainty in the FSM dynamics by over 89.6% and 74.2%, respectively, while also significantly suppressing cross-coupling effects by more than 85.5%. Furthermore, the performance of the proposed compensators is validated in a closed-loop control system, demonstrating a notable reduction in cross-axis vibrations and improved tracking performance in response to step reference inputs and highfrequency sinusoidal trajectories.
  • 258 View
  • 6 Download
Articles
imulation Study on Line-of-sight Stabilization Controller Design for Portable Optical Systems
Jae Woo Jung, Sang Won Jung, Jae Hyun Kim, Seonbin Lim, Youngjin Park, Onemook Kim, Jaehyun Lim, Jae Ho Jin, No-Cheol Park, Jun Young Yoon
J. Korean Soc. Precis. Eng. 2025;42(2):175-183.
Published online February 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.126
This paper presents a line-of-sight (LOS) stabilization control method for portable optical systems by analyzing fast steering mirror, image sensor, and gyro sensor system. To compensate for LOS errors caused by hand tremors in portable optical systems, we present the configuration of an image sensor-based LOS stabilization control system and a control strategy considering the phase delay effect caused by low sampling frequency of the image sensor. The phase delay effect of the image sensor caused restricted bandwidth, which limited the stabilization performance. To overcome such limitations, we present disturbance feedforward control using the gyro sensor and controller design method considering characteristics of the gyro sensor. Through overall system modeling, we constructed a control simulation model. The LOS stabilization performance against hand tremor disturbances was analyzed based on the proposed controller design. Simulation results demonstrated that integrating a gyro sensor-based disturbance feedforward control with the image sensor-based LOS stabilization control significantly enhanced the stabilization performance.
  • 74 View
  • 7 Download
Study on Hysteretic Characteristics of Piezoelectric Fast Steering Mirror in Frequency Response
Sang Won Jung, Hyo Geon Lee, Jae Woo Jung, Jae Hyun Kim, Seonbin Lim, Youngjin Park, Onemook Kim, Jaehyun Lim, Kijun Seong, Daehee Lee, Minjae Ko, No-Cheol Park, Jun Young Yoon
J. Korean Soc. Precis. Eng. 2024;41(11):913-920.
Published online November 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.116
Nonlinear hysteresis effects in piezoelectric fast steering mirrors (FSMs) are major culprits of deteriorating the servo performance and reducing the robustness of a control system. In order to compensate for such nonlinearities, this paper presents an identification and compensation method of piezoelectric hysteresis using frequency response measurements. The relationship between hysteresis curves and frequency response was analyzed using various amplitudes of input voltage and measured output displacements. Results proved that hysteresis curves could be reconstructed based on frequency response measurements. By utilizing an inverse function from reconstructed hysteresis curves, parameters for the compensation model were identified. Experimental results showed that the maximum range of output displacement at the nominal position due to hysteresis was significantly decreased by 76% when the hysteresis model identified by the proposed frequency-domain method was used. In addition, the compensated frequency response showed consistent results regardless of input amplitudes, implying that linear dynamics of the piezoelectric FSM could be separately measured.

Citations

Citations to this article as recorded by  Crossref logo
  • Model-based Hysteresis and Cross-coupling Compensation for Precision Control of Piezoelectric Fast Steering Mirror
    Hyo Geon Lee, Jae Woo Jung, Sang Won Jung, Jae Hyun Kim, Seonbin Lim, Youngjin Park, Jaehyun Lim, Kijun Seong, Daehee Lee, Seunggu Kang, No-Cheol Park, Jun Young Yoon
    Journal of the Korean Society for Precision Engineering.2026; 43(2): 139.     CrossRef
  • 76 View
  • 0 Download
  • Crossref
Technical Trend of Optical Information Storage Device
Tae-Sun Song, Moon-Do Lee, Hong-Gul Jun, No-Cheol Park, Young-Phil Park
J. Korean Soc. Precis. Eng. 2001;18(4):25-36.
Published online April 1, 2001
  • 14 View
  • 0 Download