Sustainable Aviation Fuel (SAF) is crucial for achieving carbon neutrality in the aviation sector. Among various production methods, Fischer–Tropsch (FT) synthesis using eco-friendly syngas has garnered significant attention. Two primary routes for producing syngas for FT synthesis—Dry Reforming of Methane (DRM) and Water Electrolysis combined with Reverse Water Gas Shift (WE&RWGS)—are actively being studied. As upstream processes, these routes are evaluated for their potential to provide low-carbon syngas for FT synthesis. However, comprehensive comparisons between these two pathways are limited, despite their importance for future technology planning and decision-making. In this study, we conduct a comparative evaluation of DRM- and WE&RWGS-based SAF production systems using virtual process design, along with life cycle assessment (LCA) and techno-economic analysis (TEA), to assess their environmental and economic viability as future technologies. LCA results indicate that the DRM-based route has more than four times lower environmental impact compared to the WE&RWGS-based system. The majority of the environmental burden arises from feedstock supply (CH4 and CO2) and energy inputs. TEA results suggest that while the base case scenario demonstrates limited economic feasibility, future scenarios that incorporate economies of scale and policy incentives show promise for long-term economic viability.